Create modeling_multi_task_unixcoder.py
Browse files
modeling_multi_task_unixcoder.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PreTrainedModel, AutoModel, PretrainedConfig
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
|
5 |
+
class MultiTaskUnixCoderConfig(PretrainedConfig):
|
6 |
+
model_type = "multi_task_unixcoder"
|
7 |
+
def __init__(self, num_cwe_classes=106, **kwargs):
|
8 |
+
super().__init__(**kwargs)
|
9 |
+
self.num_cwe_classes = num_cwe_classes
|
10 |
+
|
11 |
+
class MultiTaskUnixCoder(PreTrainedModel):
|
12 |
+
config_class = MultiTaskUnixCoderConfig
|
13 |
+
base_model_prefix = "base"
|
14 |
+
|
15 |
+
def __init__(self, config):
|
16 |
+
super().__init__(config)
|
17 |
+
self.base = AutoModel.from_pretrained("microsoft/unixcoder-base")
|
18 |
+
self.vul_head = nn.Linear(768, 2)
|
19 |
+
self.cwe_head = nn.Linear(768, config.num_cwe_classes + 1)
|
20 |
+
|
21 |
+
def forward(self, input_ids, attention_mask=None, labels_vul=None, labels_cwe=None):
|
22 |
+
outputs = self.base(input_ids=input_ids, attention_mask=attention_mask)
|
23 |
+
hidden_state = outputs.last_hidden_state[:, 0, :]
|
24 |
+
|
25 |
+
vul_logits = self.vul_head(hidden_state)
|
26 |
+
cwe_logits = self.cwe_head(hidden_state)
|
27 |
+
|
28 |
+
loss = None
|
29 |
+
if labels_vul is not None and labels_cwe is not None:
|
30 |
+
vul_loss = nn.CrossEntropyLoss()(vul_logits, labels_vul)
|
31 |
+
cwe_loss = nn.CrossEntropyLoss()(cwe_logits, labels_cwe + 1)
|
32 |
+
loss = vul_loss + cwe_loss
|
33 |
+
|
34 |
+
return {"loss": loss, "vul_logits": vul_logits, "cwe_logits": cwe_logits} if loss is not None else {"vul_logits": vul_logits, "cwe_logits": cwe_logits}
|