from transformers import PreTrainedModel, AutoModel, PretrainedConfig import torch from torch import nn class MultiTaskUnixCoderConfig(PretrainedConfig): model_type = "multi_task_unixcoder" def __init__(self, num_cwe_classes=106, **kwargs): super().__init__(**kwargs) self.num_cwe_classes = num_cwe_classes class MultiTaskUnixCoder(PreTrainedModel): config_class = MultiTaskUnixCoderConfig base_model_prefix = "base" def __init__(self, config): super().__init__(config) self.base = AutoModel.from_pretrained("microsoft/unixcoder-base") self.vul_head = nn.Linear(768, 2) self.cwe_head = nn.Linear(768, config.num_cwe_classes + 1) def forward(self, input_ids, attention_mask=None, labels_vul=None, labels_cwe=None): outputs = self.base(input_ids=input_ids, attention_mask=attention_mask) hidden_state = outputs.last_hidden_state[:, 0, :] vul_logits = self.vul_head(hidden_state) cwe_logits = self.cwe_head(hidden_state) loss = None if labels_vul is not None and labels_cwe is not None: vul_loss = nn.CrossEntropyLoss()(vul_logits, labels_vul) cwe_loss = nn.CrossEntropyLoss()(cwe_logits, labels_cwe + 1) loss = vul_loss + cwe_loss return {"loss": loss, "vul_logits": vul_logits, "cwe_logits": cwe_logits} if loss is not None else {"vul_logits": vul_logits, "cwe_logits": cwe_logits}