mahdin70 commited on
Commit
bfc5b59
·
verified ·
1 Parent(s): 6d342bc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -1
README.md CHANGED
@@ -5,4 +5,94 @@ datasets:
5
  base_model:
6
  - microsoft/unixcoder-base
7
  library_name: transformers
8
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  base_model:
6
  - microsoft/unixcoder-base
7
  library_name: transformers
8
+ ---
9
+
10
+ # Fine-Tuned UnixCoder for Vulnerability and CWE Classification
11
+
12
+ ## Model Overview
13
+ This model is a fine-tuned version of **microsoft/unixcoder-base** on a curated and enriched dataset for vulnerability detection and CWE classification. It is capable of predicting whether a given code snippet is vulnerable and, if vulnerable, identifying the specific CWE ID associated with it.
14
+
15
+ ## Dataset
16
+ The model was fine-tuned using the dataset [mahdin70/cwe_enriched_balanced_bigvul_primevul](https://huggingface.co/datasets/mahdin70/cwe_enriched_balanced_bigvul_primevul). The dataset contains both vulnerable and non-vulnerable code samples and is enriched with CWE metadata.
17
+
18
+ ### CWE IDs Covered:
19
+ 1. **CWE-119**: Improper Restriction of Operations within the Bounds of a Memory Buffer
20
+ 2. **CWE-20**: Improper Input Validation
21
+ 3. **CWE-125**: Out-of-bounds Read
22
+ 4. **CWE-399**: Resource Management Errors
23
+ 5. **CWE-200**: Information Exposure
24
+ 6. **CWE-787**: Out-of-bounds Write
25
+ 7. **CWE-264**: Permissions, Privileges, and Access Controls
26
+ 8. **CWE-416**: Use After Free
27
+ 9. **CWE-476**: NULL Pointer Dereference
28
+ 10. **CWE-190**: Integer Overflow or Wraparound
29
+ 11. **CWE-189**: Numeric Errors
30
+ 12. **CWE-362**: Concurrent Execution using Shared Resource with Improper Synchronization
31
+
32
+ ---
33
+
34
+ ## Model Training
35
+ The model was trained for **3 epochs** with the following configuration:
36
+ - **Learning Rate**: 2e-5
37
+ - **Weight Decay**: 0.01
38
+ - **Batch Size**: 8
39
+ - **Optimizer**: AdamW
40
+ - **Scheduler**: Linear
41
+
42
+ ### Training Loss and Validation Loss Per Epoch:
43
+ | Epoch | Training Loss | Validation Loss | Vul Accuracy | Vul Precision | Vul Recall | Vul F1 | CWE Accuracy |
44
+ |------|---------------|----------------|--------------|---------------|-----------|-------|---------------|
45
+ | 1 | 1.3732 | 1.2689 | 0.8220 | 0.8831 | 0.6231 | 0.7307| 0.4032 |
46
+ | 2 | 1.0318 | 1.1613 | 0.8229 | 0.8238 | 0.6907 | 0.7514| 0.4903 |
47
+ | 3 | 0.8192 | 1.1871 | 0.8158 | 0.7997 | 0.6999 | 0.7465| 0.5326 |
48
+
49
+ #### Training Summary:
50
+ - **Total Training Steps**: 2958
51
+ - **Training Loss**: 1.1267
52
+ - **Training Time**: 2687.8 seconds (~45 minutes)
53
+ - **Training Speed**: 17.6 samples per second
54
+ - **Steps Per Second**: 1.1
55
+
56
+ ---
57
+
58
+ ## Model Evaluation (Test Set Results)
59
+ The model was evaluated on the test set with the following metrics:
60
+
61
+ ### Vulnerability Detection Metrics:
62
+ - **Accuracy**: 82.73%
63
+ - **Precision**: 82.15%
64
+ - **Recall**: 70.86%
65
+ - **F1-Score**: 76.09%
66
+
67
+ ### CWE Classification Metrics:
68
+ - **Accuracy**: 51.46%
69
+ - **Precision**: 51.11%
70
+ - **Recall**: 51.46%
71
+ - **F1-Score**: 50.65%
72
+
73
+ ---
74
+
75
+ ## How to Use the Model
76
+ ```python
77
+ from transformers import AutoModel, AutoTokenizer
78
+
79
+ model = AutoModel.from_pretrained("mahdin70/UnixCoder-VulnCWE", trust_remote_code=True)
80
+ tokenizer = AutoTokenizer.from_pretrained("microsoft/unixcoder-base")
81
+
82
+ code_snippet = "int main() { int arr[10]; arr[11] = 5; return 0; }"
83
+ inputs = tokenizer(code_snippet, return_tensors="pt")
84
+ outputs = model(**inputs)
85
+
86
+ vul_logits = outputs["vul_logits"]
87
+ cwe_logits = outputs["cwe_logits"]
88
+
89
+ vul_pred = vul_logits.argmax(dim=1).item()
90
+ cwe_pred = cwe_logits.argmax(dim=1).item()
91
+
92
+ print(f"Vulnerability: {'Vulnerable' if vul_pred == 1 else 'Non-vulnerable'}")
93
+ print(f"CWE ID: {cwe_pred if vul_pred == 1 else 'N/A'}")
94
+ ```
95
+
96
+ ## Limitations and Future Improvements
97
+ - The model has limited accuracy on CWE classification (51.46%). Improving the model with advanced architectures or better data balancing could yield better results.
98
+ - The model might not perform well on edge cases or unseen CWEs.