File size: 3,891 Bytes
24e8d89 d61a3c5 24e8d89 d61a3c5 24e8d89 d61a3c5 24e8d89 d61a3c5 24e8d89 d61a3c5 24e8d89 d61a3c5 24e8d89 d61a3c5 24e8d89 d61a3c5 24e8d89 d61a3c5 24e8d89 d61a3c5 24e8d89 d61a3c5 24e8d89 d61a3c5 24e8d89 d61a3c5 24e8d89 d61a3c5 24e8d89 d61a3c5 24e8d89 d61a3c5 24e8d89 d61a3c5 7c73292 24e8d89 d61a3c5 7c73292 d61a3c5 24e8d89 d61a3c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
---
library_name: transformers
tags:
- Code
- Vulnerability
- Detection
datasets:
- DetectVul/devign
language:
- en
base_model:
- microsoft/codebert-base
license: mit
metrics:
- accuracy
- precision
- f1
- recall
---
## CodeBERT for Code Vulnerability Detection
## Model Summary
This model is a fine-tuned version of **microsoft/codebert-base**, optimized for detecting vulnerabilities in code. It is trained on the **DetectVul/devign** dataset. The model takes in a code snippet and classifies it as either **safe (0)** or **vulnerable (1)**.
## Model Details
- **Developed by:** Mukit Mahdin
- **Finetuned from:** `microsoft/codebert-base`
- **Language(s):** English (for code comments & metadata), C/C++
- **License:** MIT
- **Task:** Code vulnerability detection
- **Dataset Used:** `DetectVul/devign`
- **Architecture:** Transformer-based sequence classification
## Uses
### Direct Use
This model can be used for **static code analysis**, security audits, and automatic vulnerability detection in software repositories. It is useful for:
- **Developers**: To analyze their code for potential security flaws.
- **Security Teams**: To scan repositories for known vulnerabilities.
- **Researchers**: To study vulnerability detection in AI-powered systems.
### Downstream Use
This model can be integrated into **IDE plugins**, **CI/CD pipelines**, or **security scanners** to provide real-time vulnerability detection.
### Out-of-Scope Use
- The model is **not meant to replace human security experts**.
- It may not generalize well to **languages other than C/C++**.
- False positives/negatives may occur due to dataset limitations.
## Bias, Risks, and Limitations
- **False Positives & False Negatives:** The model may flag safe code as vulnerable or miss actual vulnerabilities.
- **Limited to C/C++:** The model was trained on a dataset primarily composed of **C and C++ code**. It may not perform well on other languages.
- **Dataset Bias:** The training data may not cover all possible vulnerabilities.
### Recommendations
Users should **not rely solely on the model** for security assessments. Instead, it should be used alongside **manual code review and static analysis tools**.
## How to Get Started with the Model
Use the code below to load the model and run inference on a sample code snippet:
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# Load the fine-tuned model
tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base")
model = AutoModelForSequenceClassification.from_pretrained("mahdin70/codebert-devign-code-vulnerability-detector")
# Sample code snippet
code_snippet = '''
void process(char *input) {
char buffer[50];
strcpy(buffer, input); // Potential buffer overflow
}
'''
# Tokenize the input
inputs = tokenizer(code_snippet, return_tensors="pt", truncation=True, padding="max_length", max_length=512)
# Run inference
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_label = torch.argmax(predictions, dim=1).item()
# Output the result
print("Vulnerable Code" if predicted_label == 1 else "Safe Code")
```
## Training Details
### Training Data
- **Dataset:** `DetectVul/devign`
- **Classes:** `0 (Safe)`, `1 (Vulnerable)`
- **Size:** `21800` Code Snippets
### Training Procedure
- **Optimizer:** AdamW
- **Loss Function:** CrossEntropyLoss
- **Batch Size:** 8
- **Learning Rate:** 2e-05
- **Epochs:** 3
- **Hardware Used:** 2x T4 GPU
### Metrics
| Metric | Score |
|------------|-------------|
| **Train Loss** | 0.5898 |
| **Evaluation Loss** | 0.6153 |
| **Accuracy** | 64.09% |
| **F1 Score** | 46.42% |
| **Precision** | 73.78% |
| **Recall** | 33.86% |
## Environmental Impact
| Factor | Value |
|-----------|----------|
| **GPU Used** | T4 GPU |
| **Training Time** | ~1 hour | |