maiurilorenzo commited on
Commit
e11d1c6
·
verified ·
1 Parent(s): da2dacd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -9
README.md CHANGED
@@ -115,7 +115,7 @@ else:
115
  🚨 Not for clinical diagnosis! This model should not be used in real-world medical decision-making without further validation & regulatory approval. It is intended for research and educational purposes only.
116
 
117
  ## Bias, Risks, and Limitations
118
- - Dataset Bias: The model is trained on CBIS-DDSM, which may not fully represent all patient demographics.
119
  - False Positives/Negatives: Misclassification can occur, highlighting the need for human review in medical practice.
120
  - Limited Generalization: Performance may degrade on datasets from different imaging devices or institutions.
121
  - Ethical Concerns: AI in medical imaging should be deployed transparently and with clinical oversight to avoid unintended harm.
@@ -129,7 +129,7 @@ else:
129
  ## Training Details
130
 
131
  ### Training Data
132
- - Dataset: CBIS-DDSM (Curated Breast Imaging Subset of DDSM)
133
  - Image Types: High-resolution mammograms
134
  - Classes: Cancerous (Malignant), Non-Cancerous (Benign/Normal)
135
  - Annotations: Region of Interest (ROI) bounding boxes & BI-RADS assessments
@@ -153,7 +153,7 @@ else:
153
 
154
  #### Training Hyperparameters
155
 
156
- - **Epochs:** Coming soon...
157
  - **Batch Size:** 75
158
  - **Learning Rate:** 0.001
159
  - **Optimizer:** Adam
@@ -163,7 +163,7 @@ else:
163
 
164
  <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
165
 
166
- - Total Training Time: Coming soon...
167
  - Hardware Used: Tesla P100
168
 
169
  ### Testing Data, Factors & Metrics
@@ -180,13 +180,11 @@ The model was evaluated on the test split of the CBIS-DDSM dataset
180
 
181
  The following metrics were computed for evaluation:
182
  - Accuracy
183
- - Precision & Recall
184
  - Confusion Matrix
185
- - AUC-ROC Curve
186
 
187
  ### Results
188
 
189
- - Accuracy: Coming soon...
190
 
191
  #### Summary
192
 
@@ -199,9 +197,9 @@ The model achieves strong performance on explicit misogyny detection, with poten
199
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
200
 
201
  - **Hardware Type:** Tesla P100
202
- - **Hours used:** Coming soon...
203
  - **Cloud Provider:** Kaggle
204
- - **Carbon Emitted:** Coming soon...
205
 
206
  ## Citation
207
 
 
115
  🚨 Not for clinical diagnosis! This model should not be used in real-world medical decision-making without further validation & regulatory approval. It is intended for research and educational purposes only.
116
 
117
  ## Bias, Risks, and Limitations
118
+ - Dataset Bias: The model is trained on Breast Histopathology Images, which may not fully represent all patient demographics.
119
  - False Positives/Negatives: Misclassification can occur, highlighting the need for human review in medical practice.
120
  - Limited Generalization: Performance may degrade on datasets from different imaging devices or institutions.
121
  - Ethical Concerns: AI in medical imaging should be deployed transparently and with clinical oversight to avoid unintended harm.
 
129
  ## Training Details
130
 
131
  ### Training Data
132
+ - Dataset: Breast Histopathology Images
133
  - Image Types: High-resolution mammograms
134
  - Classes: Cancerous (Malignant), Non-Cancerous (Benign/Normal)
135
  - Annotations: Region of Interest (ROI) bounding boxes & BI-RADS assessments
 
153
 
154
  #### Training Hyperparameters
155
 
156
+ - **Epochs:** 20
157
  - **Batch Size:** 75
158
  - **Learning Rate:** 0.001
159
  - **Optimizer:** Adam
 
163
 
164
  <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
165
 
166
+ - Total Training Time: 33m
167
  - Hardware Used: Tesla P100
168
 
169
  ### Testing Data, Factors & Metrics
 
180
 
181
  The following metrics were computed for evaluation:
182
  - Accuracy
 
183
  - Confusion Matrix
 
184
 
185
  ### Results
186
 
187
+ - Accuracy: 0.9789
188
 
189
  #### Summary
190
 
 
197
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
198
 
199
  - **Hardware Type:** Tesla P100
200
+ - **Hours used:** 0.33
201
  - **Cloud Provider:** Kaggle
202
+ - **Carbon Emitted:** 0.04
203
 
204
  ## Citation
205