--- base_model: manucos/finetuned__roberta-base-bne__augmented-ultrasounds tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: test-finetuned__roberta-base-bne__augmented-ultrasounds-ner results: [] --- # test-finetuned__roberta-base-bne__augmented-ultrasounds-ner This model is a fine-tuned version of [manucos/finetuned__roberta-base-bne__augmented-ultrasounds](https://huggingface.co/manucos/finetuned__roberta-base-bne__augmented-ultrasounds) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3332 - Precision: 0.7926 - Recall: 0.8856 - F1: 0.8365 - Accuracy: 0.9236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 206 | 0.2753 | 0.7460 | 0.8411 | 0.7907 | 0.9106 | | No log | 2.0 | 412 | 0.2692 | 0.7770 | 0.8603 | 0.8165 | 0.9238 | | 0.2993 | 3.0 | 618 | 0.3276 | 0.7493 | 0.8472 | 0.7952 | 0.9087 | | 0.2993 | 4.0 | 824 | 0.2983 | 0.7847 | 0.8704 | 0.8253 | 0.9180 | | 0.054 | 5.0 | 1030 | 0.3066 | 0.7852 | 0.8806 | 0.8302 | 0.9221 | | 0.054 | 6.0 | 1236 | 0.3211 | 0.7652 | 0.8806 | 0.8188 | 0.9211 | | 0.054 | 7.0 | 1442 | 0.3314 | 0.7883 | 0.8704 | 0.8273 | 0.9189 | | 0.0205 | 8.0 | 1648 | 0.3245 | 0.7827 | 0.8785 | 0.8278 | 0.9224 | | 0.0205 | 9.0 | 1854 | 0.3306 | 0.7825 | 0.8846 | 0.8304 | 0.9235 | | 0.0128 | 10.0 | 2060 | 0.3332 | 0.7926 | 0.8856 | 0.8365 | 0.9236 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1