---
base_model:
- stabilityai/stable-diffusion-2-1
datasets:
- manycore-research/SpatialGen-Testset
license: creativeml-openrail-m
pipeline_tag: image-to-3d
---
# SpatialGen: Layout-guided 3D Indoor Scene Generation
| Image-to-Scene Results | Text-to-Scene Results |
| :--------------------------------------: | :----------------------------------------: |
|  |  |
TL;DR: Given a 3D semantic layout, SpatialGen can generate a 3D indoor scene conditioned on either a reference image (left) or a textual description (right) using a multi-view, multi-modal diffusion model.
## ✨ News
- [Sep, 2025] We released the paper of SpatialGen!
- [Aug, 2025] Initial release of SpatialGen-1.0!
## 📋 Release Plan
- [x] Provide inference code of SpatialGen.
- [ ] Provide training instruction for SpatialGen.
- [ ] Release SpatialGen dataset.
## SpatialGen Models
| **Model** | **Download** |
| :-----------------------: | -------------------------------------------------------------------------------------|
| SpatialGen-1.0 | [🤗 HuggingFace](https://huggingface.co/manycore-research/SpatialGen-1.0) |
| FLUX.1-Layout-ControlNet | [🤗 HuggingFace](https://huggingface.co/manycore-research/FLUX.1-Layout-ControlNet) |
| FLUX.1-Wireframe-dev-lora | [🤗 HuggingFace](https://huggingface.co/manycore-research/FLUX.1-Wireframe-dev-lora) |
## Usage
### 🔧 Installation
Tested with the following environment:
* Python 3.10
* PyTorch 2.3.1
* CUDA Version 12.1
```bash
# clone the repository
git clone https://github.com/manycore-research/SpatialGen.git
cd SpatialGen
python -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
# Optional: fix the [flux inference bug](https://github.com/vllm-project/vllm/issues/4392)
pip install nvidia-cublas-cu12==12.4.5.8
```
### 📊 Dataset
We provide [SpatialGen-Testset](https://huggingface.co/datasets/manycore-research/SpatialGen-Testset) with 48 rooms, which labeled with 3D layout and 4.8K rendered images (48 x 100 views, including RGB, normal, depth maps and semantic maps) for MVD inference.
### Inference
```bash
# Single image-to-3D Scene
bash scripts/infer_spatialgen_i2s.sh
# Text-to-image-to-3D Scene
# in captions/spatialgen_testset_captions.jsonl, we provide text prompts of different styles for each room,
# choose a pair of scene_id and prompt to run the text2scene experiment
bash scripts/infer_spatialgen_t2s.sh
```
## License
[SpatialGen-1.0](https://huggingface.co/manycore-research/SpatialGen-1.0) is derived from [Stable-Diffusion-v2.1](https://github.com/Stability-AI/stablediffusion), which is licensed under the [CreativeML Open RAIL++-M License](https://github.com/Stability-AI/stablediffusion/blob/main/LICENSE-MODEL). [FLUX.1-Layout-ControlNet](https://huggingface.co/manycore-research/FLUX.1-Layout-ControlNet) is licensed under the [FLUX.1-dev Non-Commercial License](https://github.com/black-forest-labs/flux/blob/main/model_licenses/LICENSE-FLUX1-dev).
## Acknowledgements
We would like to thank the following projects that made this work possible:
[DiffSplat](https://github.com/chenguolin/DiffSplat) | [SD 2.1](https://github.com/Stability-AI/stablediffusion) | [TAESD](https://github.com/madebyollin/taesd) | [FLUX](https://github.com/black-forest-labs/flux/) | [SpatialLM](https://github.com/manycore-research/SpatialLM)
## Citation
```bibtex
@article{SpatialGen,
title = {SpatialGen: Layout-guided 3D Indoor Scene Generation},
author = {Fang, Chuan and Li, Heng and Liang, Yixu and Zheng, Jia and Mao, Yongsen and Liu, Yuan and Tang, Rui and Zhou, Zihan and Tan, Ping},
journal = {arXiv preprint},
year = {2025},
eprint = {2509.14981},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}
```