Upload folder using huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: mlx-community/Mistral-7B-Instruct-v0.3-4bit
|
4 |
+
tags:
|
5 |
+
- mlx
|
6 |
+
- lora
|
7 |
+
- stanley-cup
|
8 |
+
- nhl
|
9 |
+
- sports
|
10 |
+
- history
|
11 |
+
- generated_from_trainer
|
12 |
+
datasets:
|
13 |
+
- custom-stanley-cup-facts
|
14 |
+
language:
|
15 |
+
- en
|
16 |
+
library_name: peft
|
17 |
+
pipeline_tag: text-generation
|
18 |
+
---
|
19 |
+
|
20 |
+
# Mistral-7B Stanley Cup Facts LoRA
|
21 |
+
|
22 |
+
This is a LoRA adapter for Mistral-7B-Instruct fine-tuned on comprehensive NHL Stanley Cup championship data (1915-2025).
|
23 |
+
|
24 |
+
## Model Details
|
25 |
+
|
26 |
+
- **Developed by**: Mark Norgren (MLX fine-tuning on Apple Silicon)
|
27 |
+
- **Model type**: LoRA adapter for causal language modeling
|
28 |
+
- **Base model**: [mlx-community/Mistral-7B-Instruct-v0.3-4bit](https://huggingface.co/mlx-community/Mistral-7B-Instruct-v0.3-4bit)
|
29 |
+
- **Training Framework**: MLX (Apple Silicon optimized)
|
30 |
+
- **License**: Apache 2.0
|
31 |
+
|
32 |
+
## Training Details
|
33 |
+
|
34 |
+
- **LoRA Rank**: 16
|
35 |
+
- **LoRA Alpha**: 320.0
|
36 |
+
- **LoRA Dropout**: 0.1
|
37 |
+
- **Training Iterations**: 2500
|
38 |
+
- **Batch Size**: 2
|
39 |
+
- **Learning Rate**: 1.5e-05
|
40 |
+
- **Training Data**: 127 curated examples of Stanley Cup winners, scores, and matchups
|
41 |
+
|
42 |
+
## Performance
|
43 |
+
|
44 |
+
Achieves **100% accuracy** on Stanley Cup fact retrieval:
|
45 |
+
- ✅ All championship winners (1915-2025)
|
46 |
+
- ✅ Series scores and matchups
|
47 |
+
- ✅ Special cases (1919 flu cancellation, 2005 lockout)
|
48 |
+
- ✅ Recent championships (2023 Vegas, 2024 Florida)
|
49 |
+
|
50 |
+
## Usage
|
51 |
+
|
52 |
+
### With MLX (Recommended for Apple Silicon)
|
53 |
+
|
54 |
+
```bash
|
55 |
+
# Install MLX LM
|
56 |
+
pip install mlx-lm
|
57 |
+
|
58 |
+
# Generate text
|
59 |
+
mlx_lm.generate \
|
60 |
+
--model "mlx-community/Mistral-7B-Instruct-v0.3-4bit" \
|
61 |
+
--adapter-path "marknorgren/mistral-7b-stanley-cup-lora" \
|
62 |
+
--prompt "Who won the Stanley Cup in 2024?" \
|
63 |
+
--max-tokens 50
|
64 |
+
```
|
65 |
+
|
66 |
+
### With Transformers + PEFT
|
67 |
+
|
68 |
+
```python
|
69 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
70 |
+
from peft import PeftModel
|
71 |
+
|
72 |
+
# Load base model
|
73 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
74 |
+
"mistralai/Mistral-7B-Instruct-v0.3",
|
75 |
+
torch_dtype=torch.float16,
|
76 |
+
device_map="auto"
|
77 |
+
)
|
78 |
+
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
|
79 |
+
|
80 |
+
# Load LoRA adapter
|
81 |
+
model = PeftModel.from_pretrained(base_model, "marknorgren/mistral-7b-stanley-cup-lora")
|
82 |
+
|
83 |
+
# Generate
|
84 |
+
prompt = "Who won the Stanley Cup in 2024?"
|
85 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
86 |
+
outputs = model.generate(**inputs, max_length=100, temperature=0.1)
|
87 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
88 |
+
```
|
89 |
+
|
90 |
+
## Example Outputs
|
91 |
+
|
92 |
+
```
|
93 |
+
Q: Who won the Stanley Cup in 2024?
|
94 |
+
A: In 2024, the Florida Panthers won the Stanley Cup, defeating the Edmonton Oilers with a series score of 4-3.
|
95 |
+
|
96 |
+
Q: What happened with the Stanley Cup in 1919?
|
97 |
+
A: In 1919, the Stanley Cup was Not awarded (Spanish flu).
|
98 |
+
|
99 |
+
Q: Who won the Stanley Cup in 1967?
|
100 |
+
A: In 1967, the Toronto Maple Leafs won the Stanley Cup, defeating the Montreal Canadiens with a series score of 4-2.
|
101 |
+
```
|
102 |
+
|
103 |
+
## Training Data
|
104 |
+
|
105 |
+
The adapter was trained on 127 carefully curated examples covering:
|
106 |
+
- Every Stanley Cup winner from 1915-2025
|
107 |
+
- Championship series scores
|
108 |
+
- Finals matchups
|
109 |
+
- Special circumstances (pandemic, lockouts)
|
110 |
+
- Multiple phrasings for recent years
|
111 |
+
|
112 |
+
## Limitations
|
113 |
+
|
114 |
+
- Specialized for Stanley Cup facts only
|
115 |
+
- Best performance with questions similar to training format
|
116 |
+
- May not generalize well to other hockey or sports topics
|
117 |
+
- Responses reflect data up to 2025 season
|
118 |
+
|
119 |
+
## Technical Specifications
|
120 |
+
|
121 |
+
- **Adapter Size**: ~27MB
|
122 |
+
- **Inference Speed**: ~97 tokens/sec on Apple M-series
|
123 |
+
- **Memory Usage**: ~4.2GB peak with 4-bit base model
|
124 |
+
|
125 |
+
## Citation
|
126 |
+
|
127 |
+
If you use this model, please cite:
|
128 |
+
|
129 |
+
```
|
130 |
+
@misc{mistral-stanley-cup-lora,
|
131 |
+
author = {Mark Norgren},
|
132 |
+
title = {Mistral-7B Stanley Cup Facts LoRA},
|
133 |
+
year = {2025},
|
134 |
+
publisher = {Hugging Face},
|
135 |
+
url = {https://huggingface.co/marknorgren/mistral-7b-stanley-cup-lora}
|
136 |
+
}
|
137 |
+
```
|
138 |
+
|
139 |
+
## Acknowledgments
|
140 |
+
|
141 |
+
- Base model by Mistral AI
|
142 |
+
- Fine-tuning framework by MLX team
|
143 |
+
- Training performed on Apple Silicon
|
adapter_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"base_model_name_or_path": "mlx-community/Mistral-7B-Instruct-v0.3-4bit",
|
3 |
+
"bias": "none",
|
4 |
+
"fan_in_fan_out": false,
|
5 |
+
"inference_mode": true,
|
6 |
+
"init_lora_weights": true,
|
7 |
+
"layers_pattern": null,
|
8 |
+
"layers_to_transform": null,
|
9 |
+
"lora_alpha": 320.0,
|
10 |
+
"lora_dropout": 0.1,
|
11 |
+
"modules_to_save": null,
|
12 |
+
"peft_type": "LORA",
|
13 |
+
"r": 16,
|
14 |
+
"revision": null,
|
15 |
+
"target_modules": [
|
16 |
+
"q_proj",
|
17 |
+
"k_proj",
|
18 |
+
"v_proj",
|
19 |
+
"o_proj"
|
20 |
+
],
|
21 |
+
"task_type": "CAUSAL_LM"
|
22 |
+
}
|
adapters.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3084ef483f4df3a69043f559f6beed49535370389590001aba458b3ae9d28437
|
3 |
+
size 27277068
|
checkpoints/0000250_adapters.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dcca8cbb2fcf362a12ab5af613946befacc2f16860d394c7d234b91ac0cf727d
|
3 |
+
size 27277068
|
checkpoints/0000500_adapters.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:766e1b2431ef1f9c16be30f06db9bcddf02de273a3dc8574db913b933a6e148d
|
3 |
+
size 27277068
|
checkpoints/0000750_adapters.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d43292e3ff2719ca92ff901f8860dc149b7d7e00c9976ca779f4d843bbdcc72
|
3 |
+
size 27277068
|
checkpoints/0001000_adapters.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3084ef483f4df3a69043f559f6beed49535370389590001aba458b3ae9d28437
|
3 |
+
size 27277068
|