|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ PyTorch Florence-2 model.""" | 
					
						
						|  | from dataclasses import dataclass | 
					
						
						|  | from typing import List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import math | 
					
						
						|  | import torch | 
					
						
						|  | import torch.utils.checkpoint | 
					
						
						|  | from torch import nn | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | import torch.utils.checkpoint as checkpoint | 
					
						
						|  | from torch.nn import CrossEntropyLoss | 
					
						
						|  | from collections import OrderedDict | 
					
						
						|  | from einops import rearrange | 
					
						
						|  | from timm.models.layers import DropPath, trunc_normal_ | 
					
						
						|  |  | 
					
						
						|  | from transformers.modeling_utils import PreTrainedModel | 
					
						
						|  | from transformers.utils import ( | 
					
						
						|  | ModelOutput, | 
					
						
						|  | add_start_docstrings, | 
					
						
						|  | add_start_docstrings_to_model_forward, | 
					
						
						|  | is_flash_attn_2_available, | 
					
						
						|  | logging, | 
					
						
						|  | replace_return_docstrings, | 
					
						
						|  | is_flash_attn_2_available, | 
					
						
						|  | is_flash_attn_greater_or_equal_2_10, | 
					
						
						|  | ) | 
					
						
						|  | from .configuration_florence2 import Florence2Config | 
					
						
						|  | from .configuration_florence2 import Florence2LanguageConfig | 
					
						
						|  | from .configuration_florence2 import Florence2VisionConfig | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from transformers.activations import ACT2FN | 
					
						
						|  | from transformers.modeling_attn_mask_utils import ( | 
					
						
						|  | _prepare_4d_attention_mask, | 
					
						
						|  | _prepare_4d_attention_mask_for_sdpa, | 
					
						
						|  | _prepare_4d_causal_attention_mask, | 
					
						
						|  | _prepare_4d_causal_attention_mask_for_sdpa, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.modeling_outputs import ( | 
					
						
						|  | BaseModelOutput, | 
					
						
						|  | BaseModelOutputWithPastAndCrossAttentions, | 
					
						
						|  | Seq2SeqLMOutput, | 
					
						
						|  | Seq2SeqModelOutput, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_flash_attn_2_available(): | 
					
						
						|  | from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | _CONFIG_FOR_DOC = "Florence2Config" | 
					
						
						|  |  | 
					
						
						|  | class LearnedAbsolutePositionEmbedding2D(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | This module learns positional embeddings up to a fixed maximum size. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, embedding_dim=256, num_pos=50): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.row_embeddings = nn.Embedding(num_pos, embedding_dim // 2) | 
					
						
						|  | self.column_embeddings = nn.Embedding(num_pos, embedding_dim - (embedding_dim // 2)) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, pixel_values): | 
					
						
						|  | """ | 
					
						
						|  | pixel_values: (batch_size, height, width, num_channels) | 
					
						
						|  | returns: (batch_size, height, width, embedding_dim * 2) | 
					
						
						|  | """ | 
					
						
						|  | if len(pixel_values.shape) != 4: | 
					
						
						|  | raise ValueError('pixel_values must be a 4D tensor') | 
					
						
						|  | height, width = pixel_values.shape[1:3] | 
					
						
						|  | width_values = torch.arange(width, device=pixel_values.device) | 
					
						
						|  | height_values = torch.arange(height, device=pixel_values.device) | 
					
						
						|  | x_emb = self.column_embeddings(width_values) | 
					
						
						|  | y_emb = self.row_embeddings(height_values) | 
					
						
						|  |  | 
					
						
						|  | pos = torch.cat([x_emb.unsqueeze(0).repeat(height, 1, 1), y_emb.unsqueeze(1).repeat(1, width, 1)], dim=-1) | 
					
						
						|  |  | 
					
						
						|  | pos = pos.permute(2, 0, 1) | 
					
						
						|  | pos = pos.unsqueeze(0) | 
					
						
						|  |  | 
					
						
						|  | pos = pos.repeat(pixel_values.shape[0], 1, 1, 1) | 
					
						
						|  |  | 
					
						
						|  | pos = pos.permute(0, 2, 3, 1) | 
					
						
						|  | return pos | 
					
						
						|  |  | 
					
						
						|  | class PositionalEmbeddingCosine1D(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | This class implements a very simple positional encoding. It follows closely | 
					
						
						|  | the encoder from the link below: | 
					
						
						|  | https://pytorch.org/tutorials/beginner/translation_transformer.html | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | embed_dim: The dimension of the embeddings. | 
					
						
						|  | dropout_prob: The dropout probability. | 
					
						
						|  | max_seq_len: The maximum length to precompute the positional encodings. | 
					
						
						|  | """ | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | embed_dim: int = 512, | 
					
						
						|  | max_seq_len: int = 1024) -> None: | 
					
						
						|  | super(PositionalEmbeddingCosine1D, self).__init__() | 
					
						
						|  | self.embed_dim = embed_dim | 
					
						
						|  | self.max_seq_len = max_seq_len | 
					
						
						|  |  | 
					
						
						|  | factor = math.log(10000) | 
					
						
						|  | denominator = torch.exp( | 
					
						
						|  | -factor * torch.arange(0, self.embed_dim, 2) / self.embed_dim) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | frequencies = \ | 
					
						
						|  | torch.arange(0, self.max_seq_len) \ | 
					
						
						|  | .reshape(self.max_seq_len, 1) * denominator | 
					
						
						|  | pos_idx_to_embed = torch.zeros((self.max_seq_len, self.embed_dim)) | 
					
						
						|  |  | 
					
						
						|  | pos_idx_to_embed[:, 0::2] = torch.sin(frequencies) | 
					
						
						|  | pos_idx_to_embed[:, 1::2] = torch.cos(frequencies) | 
					
						
						|  |  | 
					
						
						|  | self.register_buffer("pos_idx_to_embed", pos_idx_to_embed) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, seq_embeds: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | seq_embeds: The sequence embeddings in order. Allowed size: | 
					
						
						|  | 1. [T, D], where T is the length of the sequence, and D is the | 
					
						
						|  | frame embedding dimension. | 
					
						
						|  | 2. [B, T, D], where B is the batch size and T and D are the | 
					
						
						|  | same as above. | 
					
						
						|  |  | 
					
						
						|  | Returns a tensor of with the same dimensions as the input: i.e., | 
					
						
						|  | [1, T, D] or [T, D]. | 
					
						
						|  | """ | 
					
						
						|  | shape_len = len(seq_embeds.shape) | 
					
						
						|  | assert 2 <= shape_len <= 3 | 
					
						
						|  | len_seq = seq_embeds.size(-2) | 
					
						
						|  | assert len_seq <= self.max_seq_len | 
					
						
						|  | pos_embeds = self.pos_idx_to_embed[0:seq_embeds.size(-2), :] | 
					
						
						|  |  | 
					
						
						|  | if shape_len == 3: | 
					
						
						|  | pos_embeds = pos_embeds.view( | 
					
						
						|  | (1, pos_embeds.size(0), pos_embeds.size(1))) | 
					
						
						|  | return pos_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LearnedAbsolutePositionEmbedding1D(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | Learnable absolute positional embeddings for 1D sequences. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | embed_dim: The dimension of the embeddings. | 
					
						
						|  | max_seq_len: The maximum length to precompute the positional encodings. | 
					
						
						|  | """ | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | embedding_dim: int = 512, | 
					
						
						|  | num_pos: int = 1024) -> None: | 
					
						
						|  | super(LearnedAbsolutePositionEmbedding1D, self).__init__() | 
					
						
						|  | self.embeddings = nn.Embedding(num_pos, embedding_dim) | 
					
						
						|  | self.num_pos = num_pos | 
					
						
						|  |  | 
					
						
						|  | def forward(self, seq_embeds: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | seq_embeds: The sequence embeddings in order. Allowed size: | 
					
						
						|  | 1. [T, D], where T is the length of the sequence, and D is the | 
					
						
						|  | frame embedding dimension. | 
					
						
						|  | 2. [B, T, D], where B is the batch size and T and D are the | 
					
						
						|  | same as above. | 
					
						
						|  |  | 
					
						
						|  | Returns a tensor of with the same dimensions as the input: i.e., | 
					
						
						|  | [1, T, D] or [T, D]. | 
					
						
						|  | """ | 
					
						
						|  | shape_len = len(seq_embeds.shape) | 
					
						
						|  | assert 2 <= shape_len <= 3 | 
					
						
						|  | len_seq = seq_embeds.size(-2) | 
					
						
						|  | assert len_seq <= self.num_pos | 
					
						
						|  |  | 
					
						
						|  | pos_embeds = self.embeddings(torch.arange(len_seq).to(seq_embeds.device)) | 
					
						
						|  |  | 
					
						
						|  | if shape_len == 3: | 
					
						
						|  | pos_embeds = pos_embeds.view( | 
					
						
						|  | (1, pos_embeds.size(0), pos_embeds.size(1))) | 
					
						
						|  | return pos_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MySequential(nn.Sequential): | 
					
						
						|  | def forward(self, *inputs): | 
					
						
						|  | for module in self._modules.values(): | 
					
						
						|  | if type(inputs) == tuple: | 
					
						
						|  | inputs = module(*inputs) | 
					
						
						|  | else: | 
					
						
						|  | inputs = module(inputs) | 
					
						
						|  | return inputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PreNorm(nn.Module): | 
					
						
						|  | def __init__(self, norm, fn, drop_path=None): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.norm = norm | 
					
						
						|  | self.fn = fn | 
					
						
						|  | self.drop_path = drop_path | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, *args, **kwargs): | 
					
						
						|  | shortcut = x | 
					
						
						|  | if self.norm != None: | 
					
						
						|  | x, size = self.fn(self.norm(x), *args, **kwargs) | 
					
						
						|  | else: | 
					
						
						|  | x, size = self.fn(x, *args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | if self.drop_path: | 
					
						
						|  | x = self.drop_path(x) | 
					
						
						|  |  | 
					
						
						|  | x = shortcut + x | 
					
						
						|  |  | 
					
						
						|  | return x, size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Mlp(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_features, | 
					
						
						|  | hidden_features=None, | 
					
						
						|  | out_features=None, | 
					
						
						|  | act_layer=nn.GELU, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | out_features = out_features or in_features | 
					
						
						|  | hidden_features = hidden_features or in_features | 
					
						
						|  | self.net = nn.Sequential(OrderedDict([ | 
					
						
						|  | ("fc1", nn.Linear(in_features, hidden_features)), | 
					
						
						|  | ("act", act_layer()), | 
					
						
						|  | ("fc2", nn.Linear(hidden_features, out_features)) | 
					
						
						|  | ])) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, size): | 
					
						
						|  | return self.net(x), size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DepthWiseConv2d(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | dim_in, | 
					
						
						|  | kernel_size, | 
					
						
						|  | padding, | 
					
						
						|  | stride, | 
					
						
						|  | bias=True, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.dw = nn.Conv2d( | 
					
						
						|  | dim_in, dim_in, | 
					
						
						|  | kernel_size=kernel_size, | 
					
						
						|  | padding=padding, | 
					
						
						|  | groups=dim_in, | 
					
						
						|  | stride=stride, | 
					
						
						|  | bias=bias | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, size): | 
					
						
						|  | B, N, C = x.shape | 
					
						
						|  | H, W = size | 
					
						
						|  | assert N == H * W | 
					
						
						|  |  | 
					
						
						|  | x = self.dw(x.transpose(1, 2).view(B, C, H, W)) | 
					
						
						|  | size = (x.size(-2), x.size(-1)) | 
					
						
						|  | x = x.flatten(2).transpose(1, 2) | 
					
						
						|  | return x, size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ConvEmbed(nn.Module): | 
					
						
						|  | """ Image to Patch Embedding | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | patch_size=7, | 
					
						
						|  | in_chans=3, | 
					
						
						|  | embed_dim=64, | 
					
						
						|  | stride=4, | 
					
						
						|  | padding=2, | 
					
						
						|  | norm_layer=None, | 
					
						
						|  | pre_norm=True | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.patch_size = patch_size | 
					
						
						|  |  | 
					
						
						|  | self.proj = nn.Conv2d( | 
					
						
						|  | in_chans, embed_dim, | 
					
						
						|  | kernel_size=patch_size, | 
					
						
						|  | stride=stride, | 
					
						
						|  | padding=padding | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | dim_norm = in_chans if pre_norm else embed_dim | 
					
						
						|  | self.norm = norm_layer(dim_norm) if norm_layer else None | 
					
						
						|  |  | 
					
						
						|  | self.pre_norm = pre_norm | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, size): | 
					
						
						|  | H, W = size | 
					
						
						|  | if len(x.size()) == 3: | 
					
						
						|  | if self.norm and self.pre_norm: | 
					
						
						|  | x = self.norm(x) | 
					
						
						|  | x = rearrange( | 
					
						
						|  | x, 'b (h w) c -> b c h w', | 
					
						
						|  | h=H, w=W | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | x = self.proj(x) | 
					
						
						|  |  | 
					
						
						|  | _, _, H, W = x.shape | 
					
						
						|  | x = rearrange(x, 'b c h w -> b (h w) c') | 
					
						
						|  | if self.norm and not self.pre_norm: | 
					
						
						|  | x = self.norm(x) | 
					
						
						|  |  | 
					
						
						|  | return x, (H, W) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ChannelAttention(nn.Module): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, dim, groups=8, qkv_bias=True): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.groups = groups | 
					
						
						|  | self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | 
					
						
						|  | self.proj = nn.Linear(dim, dim) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, size): | 
					
						
						|  | B, N, C = x.shape | 
					
						
						|  |  | 
					
						
						|  | qkv = self.qkv(x).reshape(B, N, 3, self.groups, C // self.groups).permute(2, 0, 3, 1, 4) | 
					
						
						|  | q, k, v = qkv[0], qkv[1], qkv[2] | 
					
						
						|  |  | 
					
						
						|  | q = q * (float(N) ** -0.5) | 
					
						
						|  | attention = q.transpose(-1, -2) @ k | 
					
						
						|  | attention = attention.softmax(dim=-1) | 
					
						
						|  | x = (attention @ v.transpose(-1, -2)).transpose(-1, -2) | 
					
						
						|  | x = x.transpose(1, 2).reshape(B, N, C) | 
					
						
						|  | x = self.proj(x) | 
					
						
						|  | return x, size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ChannelBlock(nn.Module): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, dim, groups, mlp_ratio=4., qkv_bias=True, | 
					
						
						|  | drop_path_rate=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, | 
					
						
						|  | conv_at_attn=True, conv_at_ffn=True): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() | 
					
						
						|  |  | 
					
						
						|  | self.conv1 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None | 
					
						
						|  | self.channel_attn = PreNorm( | 
					
						
						|  | norm_layer(dim), | 
					
						
						|  | ChannelAttention(dim, groups=groups, qkv_bias=qkv_bias), | 
					
						
						|  | drop_path | 
					
						
						|  | ) | 
					
						
						|  | self.conv2 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None | 
					
						
						|  | self.ffn = PreNorm( | 
					
						
						|  | norm_layer(dim), | 
					
						
						|  | Mlp(in_features=dim, hidden_features=int(dim*mlp_ratio), act_layer=act_layer), | 
					
						
						|  | drop_path | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, size): | 
					
						
						|  | if self.conv1: | 
					
						
						|  | x, size = self.conv1(x, size) | 
					
						
						|  | x, size = self.channel_attn(x, size) | 
					
						
						|  |  | 
					
						
						|  | if self.conv2: | 
					
						
						|  | x, size = self.conv2(x, size) | 
					
						
						|  | x, size = self.ffn(x, size) | 
					
						
						|  |  | 
					
						
						|  | return x, size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def window_partition(x, window_size: int): | 
					
						
						|  | B, H, W, C = x.shape | 
					
						
						|  | x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) | 
					
						
						|  | windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) | 
					
						
						|  | return windows | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def window_reverse(windows, batch_size: int, window_size: int, H: int, W: int): | 
					
						
						|  | B = batch_size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) | 
					
						
						|  | x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class WindowAttention(nn.Module): | 
					
						
						|  | def __init__(self, dim, num_heads, window_size, qkv_bias=True): | 
					
						
						|  |  | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.dim = dim | 
					
						
						|  | self.window_size = window_size | 
					
						
						|  | self.num_heads = num_heads | 
					
						
						|  | head_dim = dim // num_heads | 
					
						
						|  | self.scale = float(head_dim) ** -0.5 | 
					
						
						|  |  | 
					
						
						|  | self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | 
					
						
						|  | self.proj = nn.Linear(dim, dim) | 
					
						
						|  |  | 
					
						
						|  | self.softmax = nn.Softmax(dim=-1) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, size): | 
					
						
						|  |  | 
					
						
						|  | H, W = size | 
					
						
						|  | B, L, C = x.shape | 
					
						
						|  | assert L == H * W, "input feature has wrong size" | 
					
						
						|  |  | 
					
						
						|  | x = x.view(B, H, W, C) | 
					
						
						|  |  | 
					
						
						|  | pad_l = pad_t = 0 | 
					
						
						|  | pad_r = (self.window_size - W % self.window_size) % self.window_size | 
					
						
						|  | pad_b = (self.window_size - H % self.window_size) % self.window_size | 
					
						
						|  | x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) | 
					
						
						|  | _, Hp, Wp, _ = x.shape | 
					
						
						|  |  | 
					
						
						|  | x = window_partition(x, self.window_size) | 
					
						
						|  | x = x.view(-1, self.window_size * self.window_size, C) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | B_, N, C = x.shape | 
					
						
						|  | qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | 
					
						
						|  | q, k, v = qkv[0], qkv[1], qkv[2] | 
					
						
						|  |  | 
					
						
						|  | q = q * self.scale | 
					
						
						|  | attn = (q @ k.transpose(-2, -1)) | 
					
						
						|  | attn = self.softmax(attn) | 
					
						
						|  |  | 
					
						
						|  | x = (attn @ v).transpose(1, 2).reshape(B_, N, C) | 
					
						
						|  | x = self.proj(x) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | x = x.view( | 
					
						
						|  | -1, self.window_size, self.window_size, C | 
					
						
						|  | ) | 
					
						
						|  | x = window_reverse(x, B, self.window_size, Hp, Wp) | 
					
						
						|  |  | 
					
						
						|  | if pad_r > 0 or pad_b > 0: | 
					
						
						|  | x = x[:, :H, :W, :].contiguous() | 
					
						
						|  |  | 
					
						
						|  | x = x.view(B, H * W, C) | 
					
						
						|  |  | 
					
						
						|  | return x, size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SpatialBlock(nn.Module): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, dim, num_heads, window_size, | 
					
						
						|  | mlp_ratio=4., qkv_bias=True, drop_path_rate=0., act_layer=nn.GELU, | 
					
						
						|  | norm_layer=nn.LayerNorm, conv_at_attn=True, conv_at_ffn=True): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() | 
					
						
						|  |  | 
					
						
						|  | self.conv1 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None | 
					
						
						|  | self.window_attn = PreNorm( | 
					
						
						|  | norm_layer(dim), | 
					
						
						|  | WindowAttention(dim, num_heads, window_size, qkv_bias=qkv_bias), | 
					
						
						|  | drop_path | 
					
						
						|  | ) | 
					
						
						|  | self.conv2 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None | 
					
						
						|  | self.ffn = PreNorm( | 
					
						
						|  | norm_layer(dim), | 
					
						
						|  | Mlp(in_features=dim, hidden_features=int(dim*mlp_ratio), act_layer=act_layer), | 
					
						
						|  | drop_path | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, size): | 
					
						
						|  | if self.conv1: | 
					
						
						|  | x, size = self.conv1(x, size) | 
					
						
						|  | x, size = self.window_attn(x, size) | 
					
						
						|  |  | 
					
						
						|  | if self.conv2: | 
					
						
						|  | x, size = self.conv2(x, size) | 
					
						
						|  | x, size = self.ffn(x, size) | 
					
						
						|  | return x, size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DaViT(nn.Module): | 
					
						
						|  | """ DaViT: Dual-Attention Transformer | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | in_chans (int): Number of input image channels. Default: 3. | 
					
						
						|  | num_classes (int): Number of classes for classification head. Default: 1000. | 
					
						
						|  | patch_size (tuple(int)): Patch size of convolution in different stages. Default: (7, 2, 2, 2). | 
					
						
						|  | patch_stride (tuple(int)): Patch stride of convolution in different stages. Default: (4, 2, 2, 2). | 
					
						
						|  | patch_padding (tuple(int)): Patch padding of convolution in different stages. Default: (3, 0, 0, 0). | 
					
						
						|  | patch_prenorm (tuple(bool)): If True, perform norm before convlution layer. Default: (True, False, False, False). | 
					
						
						|  | embed_dims (tuple(int)): Patch embedding dimension in different stages. Default: (64, 128, 192, 256). | 
					
						
						|  | num_heads (tuple(int)): Number of spatial attention heads in different stages. Default: (4, 8, 12, 16). | 
					
						
						|  | num_groups (tuple(int)): Number of channel groups in different stages. Default: (4, 8, 12, 16). | 
					
						
						|  | window_size (int): Window size. Default: 7. | 
					
						
						|  | mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. | 
					
						
						|  | qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True. | 
					
						
						|  | drop_path_rate (float): Stochastic depth rate. Default: 0.1. | 
					
						
						|  | norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. | 
					
						
						|  | enable_checkpoint (bool): If True, enable checkpointing. Default: False. | 
					
						
						|  | conv_at_attn (bool): If True, performe depthwise convolution before attention layer. Default: True. | 
					
						
						|  | conv_at_ffn (bool): If True, performe depthwise convolution before ffn layer. Default: True. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_chans=3, | 
					
						
						|  | num_classes=1000, | 
					
						
						|  | depths=(1, 1, 3, 1), | 
					
						
						|  | patch_size=(7, 2, 2, 2), | 
					
						
						|  | patch_stride=(4, 2, 2, 2), | 
					
						
						|  | patch_padding=(3, 0, 0, 0), | 
					
						
						|  | patch_prenorm=(False, False, False, False), | 
					
						
						|  | embed_dims=(64, 128, 192, 256), | 
					
						
						|  | num_heads=(3, 6, 12, 24), | 
					
						
						|  | num_groups=(3, 6, 12, 24), | 
					
						
						|  | window_size=7, | 
					
						
						|  | mlp_ratio=4., | 
					
						
						|  | qkv_bias=True, | 
					
						
						|  | drop_path_rate=0.1, | 
					
						
						|  | norm_layer=nn.LayerNorm, | 
					
						
						|  | enable_checkpoint=False, | 
					
						
						|  | conv_at_attn=True, | 
					
						
						|  | conv_at_ffn=True, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.num_classes = num_classes | 
					
						
						|  | self.embed_dims = embed_dims | 
					
						
						|  | self.num_heads = num_heads | 
					
						
						|  | self.num_groups = num_groups | 
					
						
						|  | self.num_stages = len(self.embed_dims) | 
					
						
						|  | self.enable_checkpoint = enable_checkpoint | 
					
						
						|  | assert self.num_stages == len(self.num_heads) == len(self.num_groups) | 
					
						
						|  |  | 
					
						
						|  | num_stages = len(embed_dims) | 
					
						
						|  | dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)*2)] | 
					
						
						|  |  | 
					
						
						|  | depth_offset = 0 | 
					
						
						|  | convs = [] | 
					
						
						|  | blocks = [] | 
					
						
						|  | for i in range(num_stages): | 
					
						
						|  | conv_embed = ConvEmbed( | 
					
						
						|  | patch_size=patch_size[i], | 
					
						
						|  | stride=patch_stride[i], | 
					
						
						|  | padding=patch_padding[i], | 
					
						
						|  | in_chans=in_chans if i == 0 else self.embed_dims[i - 1], | 
					
						
						|  | embed_dim=self.embed_dims[i], | 
					
						
						|  | norm_layer=norm_layer, | 
					
						
						|  | pre_norm=patch_prenorm[i] | 
					
						
						|  | ) | 
					
						
						|  | convs.append(conv_embed) | 
					
						
						|  |  | 
					
						
						|  | block = MySequential( | 
					
						
						|  | *[ | 
					
						
						|  | MySequential(OrderedDict([ | 
					
						
						|  | ( | 
					
						
						|  | 'spatial_block', SpatialBlock( | 
					
						
						|  | embed_dims[i], | 
					
						
						|  | num_heads[i], | 
					
						
						|  | window_size, | 
					
						
						|  | drop_path_rate=dpr[depth_offset+j*2], | 
					
						
						|  | qkv_bias=qkv_bias, | 
					
						
						|  | mlp_ratio=mlp_ratio, | 
					
						
						|  | conv_at_attn=conv_at_attn, | 
					
						
						|  | conv_at_ffn=conv_at_ffn, | 
					
						
						|  | ) | 
					
						
						|  | ), | 
					
						
						|  | ( | 
					
						
						|  | 'channel_block', ChannelBlock( | 
					
						
						|  | embed_dims[i], | 
					
						
						|  | num_groups[i], | 
					
						
						|  | drop_path_rate=dpr[depth_offset+j*2+1], | 
					
						
						|  | qkv_bias=qkv_bias, | 
					
						
						|  | mlp_ratio=mlp_ratio, | 
					
						
						|  | conv_at_attn=conv_at_attn, | 
					
						
						|  | conv_at_ffn=conv_at_ffn, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | ])) for j in range(depths[i]) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | blocks.append(block) | 
					
						
						|  | depth_offset += depths[i]*2 | 
					
						
						|  |  | 
					
						
						|  | self.convs = nn.ModuleList(convs) | 
					
						
						|  | self.blocks = nn.ModuleList(blocks) | 
					
						
						|  |  | 
					
						
						|  | self.norms = norm_layer(self.embed_dims[-1]) | 
					
						
						|  | self.avgpool = nn.AdaptiveAvgPool1d(1) | 
					
						
						|  | self.head = nn.Linear(self.embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity() | 
					
						
						|  |  | 
					
						
						|  | self.apply(self._init_weights) | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def dim_out(self): | 
					
						
						|  | return self.embed_dims[-1] | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, m): | 
					
						
						|  | if isinstance(m, nn.Linear): | 
					
						
						|  | trunc_normal_(m.weight, std=0.02) | 
					
						
						|  | if m.bias is not None: | 
					
						
						|  | nn.init.constant_(m.bias, 0) | 
					
						
						|  | elif isinstance(m, nn.Conv2d): | 
					
						
						|  | nn.init.normal_(m.weight, std=0.02) | 
					
						
						|  | for name, _ in m.named_parameters(): | 
					
						
						|  | if name in ['bias']: | 
					
						
						|  | nn.init.constant_(m.bias, 0) | 
					
						
						|  | elif isinstance(m, nn.LayerNorm): | 
					
						
						|  | nn.init.constant_(m.weight, 1.0) | 
					
						
						|  | nn.init.constant_(m.bias, 0) | 
					
						
						|  | elif isinstance(m, nn.BatchNorm2d): | 
					
						
						|  | nn.init.constant_(m.weight, 1.0) | 
					
						
						|  | nn.init.constant_(m.bias, 0) | 
					
						
						|  |  | 
					
						
						|  | def forward_features_unpool(self, x): | 
					
						
						|  | """ | 
					
						
						|  | forward until avg pooling | 
					
						
						|  | Args: | 
					
						
						|  | x (_type_): input image tensor | 
					
						
						|  | """ | 
					
						
						|  | input_size = (x.size(2), x.size(3)) | 
					
						
						|  | for conv, block in zip(self.convs, self.blocks): | 
					
						
						|  | x, input_size = conv(x, input_size) | 
					
						
						|  | if self.enable_checkpoint: | 
					
						
						|  | x, input_size = checkpoint.checkpoint(block, x, input_size) | 
					
						
						|  | else: | 
					
						
						|  | x, input_size = block(x, input_size) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | def forward_features(self, x): | 
					
						
						|  | x = self.forward_features_unpool(x) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | x = self.avgpool(x.transpose(1, 2)) | 
					
						
						|  |  | 
					
						
						|  | x = torch.flatten(x, 1) | 
					
						
						|  | x = self.norms(x) | 
					
						
						|  |  | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | x = self.forward_features(x) | 
					
						
						|  | x = self.head(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | def from_config(cls, config): | 
					
						
						|  | return cls( | 
					
						
						|  | depths=config.depths, | 
					
						
						|  | embed_dims=config.dim_embed, | 
					
						
						|  | num_heads=config.num_heads, | 
					
						
						|  | num_groups=config.num_groups, | 
					
						
						|  | patch_size=config.patch_size, | 
					
						
						|  | patch_stride=config.patch_stride, | 
					
						
						|  | patch_padding=config.patch_padding, | 
					
						
						|  | patch_prenorm=config.patch_prenorm, | 
					
						
						|  | drop_path_rate=config.drop_path_rate, | 
					
						
						|  | window_size=config.window_size, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_flash_attn_2_available(): | 
					
						
						|  | from flash_attn import flash_attn_func, flash_attn_varlen_func | 
					
						
						|  | from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _get_unpad_data(attention_mask): | 
					
						
						|  | seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | 
					
						
						|  | indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | 
					
						
						|  | max_seqlen_in_batch = seqlens_in_batch.max().item() | 
					
						
						|  | cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) | 
					
						
						|  | return ( | 
					
						
						|  | indices, | 
					
						
						|  | cu_seqlens, | 
					
						
						|  | max_seqlen_in_batch, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): | 
					
						
						|  | """ | 
					
						
						|  | Shift input ids one token to the right. | 
					
						
						|  | """ | 
					
						
						|  | shifted_input_ids = input_ids.new_zeros(input_ids.shape) | 
					
						
						|  | shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() | 
					
						
						|  | shifted_input_ids[:, 0] = decoder_start_token_id | 
					
						
						|  |  | 
					
						
						|  | if pad_token_id is None: | 
					
						
						|  | raise ValueError("self.model.config.pad_token_id has to be defined.") | 
					
						
						|  |  | 
					
						
						|  | shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) | 
					
						
						|  |  | 
					
						
						|  | return shifted_input_ids | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Florence2LearnedPositionalEmbedding(nn.Embedding): | 
					
						
						|  | """ | 
					
						
						|  | This module learns positional embeddings up to a fixed maximum size. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, num_embeddings: int, embedding_dim: int): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.offset = 2 | 
					
						
						|  | super().__init__(num_embeddings + self.offset, embedding_dim) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0): | 
					
						
						|  | """`input_ids' shape is expected to be [bsz x seqlen].""" | 
					
						
						|  |  | 
					
						
						|  | bsz, seq_len = input_ids.shape[:2] | 
					
						
						|  | positions = torch.arange( | 
					
						
						|  | past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device | 
					
						
						|  | ).expand(bsz, -1) | 
					
						
						|  |  | 
					
						
						|  | return super().forward(positions + self.offset) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Florence2ScaledWordEmbedding(nn.Embedding): | 
					
						
						|  | """ | 
					
						
						|  | This module overrides nn.Embeddings' forward by multiplying with embeddings scale. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0): | 
					
						
						|  | super().__init__(num_embeddings, embedding_dim, padding_idx) | 
					
						
						|  | self.embed_scale = embed_scale | 
					
						
						|  |  | 
					
						
						|  | def forward(self, input_ids: torch.Tensor): | 
					
						
						|  | return super().forward(input_ids) * self.embed_scale | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Florence2Attention(nn.Module): | 
					
						
						|  | """Multi-headed attention from 'Attention Is All You Need' paper""" | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | embed_dim: int, | 
					
						
						|  | num_heads: int, | 
					
						
						|  | dropout: float = 0.0, | 
					
						
						|  | is_decoder: bool = False, | 
					
						
						|  | bias: bool = True, | 
					
						
						|  | is_causal: bool = False, | 
					
						
						|  | config: Optional[Florence2LanguageConfig] = None, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.embed_dim = embed_dim | 
					
						
						|  | self.num_heads = num_heads | 
					
						
						|  | self.dropout = dropout | 
					
						
						|  | self.head_dim = embed_dim // num_heads | 
					
						
						|  | self.config = config | 
					
						
						|  |  | 
					
						
						|  | if (self.head_dim * num_heads) != self.embed_dim: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" | 
					
						
						|  | f" and `num_heads`: {num_heads})." | 
					
						
						|  | ) | 
					
						
						|  | self.scaling = self.head_dim**-0.5 | 
					
						
						|  | self.is_decoder = is_decoder | 
					
						
						|  | self.is_causal = is_causal | 
					
						
						|  |  | 
					
						
						|  | self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | 
					
						
						|  | self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | 
					
						
						|  | self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | 
					
						
						|  | self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | 
					
						
						|  |  | 
					
						
						|  | def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | 
					
						
						|  | return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | key_value_states: Optional[torch.Tensor] = None, | 
					
						
						|  | past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | layer_head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  | """Input shape: Batch x Time x Channel""" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | is_cross_attention = key_value_states is not None | 
					
						
						|  |  | 
					
						
						|  | bsz, tgt_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_states = self.q_proj(hidden_states) * self.scaling | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | is_cross_attention | 
					
						
						|  | and past_key_value is not None | 
					
						
						|  | and past_key_value[0].shape[2] == key_value_states.shape[1] | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | key_states = past_key_value[0] | 
					
						
						|  | value_states = past_key_value[1] | 
					
						
						|  | elif is_cross_attention: | 
					
						
						|  |  | 
					
						
						|  | key_states = self._shape(self.k_proj(key_value_states), -1, bsz) | 
					
						
						|  | value_states = self._shape(self.v_proj(key_value_states), -1, bsz) | 
					
						
						|  | elif past_key_value is not None: | 
					
						
						|  |  | 
					
						
						|  | key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | 
					
						
						|  | value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | 
					
						
						|  | key_states = torch.cat([past_key_value[0], key_states], dim=2) | 
					
						
						|  | value_states = torch.cat([past_key_value[1], value_states], dim=2) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | 
					
						
						|  | value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | 
					
						
						|  |  | 
					
						
						|  | if self.is_decoder: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | past_key_value = (key_states, value_states) | 
					
						
						|  |  | 
					
						
						|  | proj_shape = (bsz * self.num_heads, -1, self.head_dim) | 
					
						
						|  | query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) | 
					
						
						|  | key_states = key_states.reshape(*proj_shape) | 
					
						
						|  | value_states = value_states.reshape(*proj_shape) | 
					
						
						|  |  | 
					
						
						|  | src_len = key_states.size(1) | 
					
						
						|  | attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) | 
					
						
						|  |  | 
					
						
						|  | if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" | 
					
						
						|  | f" {attn_weights.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | if attention_mask.size() != (bsz, 1, tgt_len, src_len): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" | 
					
						
						|  | ) | 
					
						
						|  | attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask | 
					
						
						|  | attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | 
					
						
						|  |  | 
					
						
						|  | attn_weights = nn.functional.softmax(attn_weights, dim=-1) | 
					
						
						|  |  | 
					
						
						|  | if layer_head_mask is not None: | 
					
						
						|  | if layer_head_mask.size() != (self.num_heads,): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" | 
					
						
						|  | f" {layer_head_mask.size()}" | 
					
						
						|  | ) | 
					
						
						|  | attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | 
					
						
						|  | attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | 
					
						
						|  | attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) | 
					
						
						|  | else: | 
					
						
						|  | attn_weights_reshaped = None | 
					
						
						|  |  | 
					
						
						|  | attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | 
					
						
						|  |  | 
					
						
						|  | attn_output = torch.bmm(attn_probs, value_states) | 
					
						
						|  |  | 
					
						
						|  | if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" | 
					
						
						|  | f" {attn_output.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) | 
					
						
						|  | attn_output = attn_output.transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.out_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights_reshaped, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Florence2FlashAttention2(Florence2Attention): | 
					
						
						|  | """ | 
					
						
						|  | Florence2 flash attention module. This module inherits from `Florence2Attention` as the weights of the module stays | 
					
						
						|  | untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | 
					
						
						|  | flash attention and deal with padding tokens in case the input contains any of them. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, *args, **kwargs): | 
					
						
						|  | super().__init__(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | 
					
						
						|  |  | 
					
						
						|  | def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | 
					
						
						|  | return tensor.view(bsz, seq_len, self.num_heads, self.head_dim) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | key_value_states: Optional[torch.Tensor] = None, | 
					
						
						|  | past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | layer_head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | raise ValueError("Florence2FlashAttention2 attention does not support output_attentions") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | is_cross_attention = key_value_states is not None | 
					
						
						|  |  | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_states = self._reshape(self.q_proj(hidden_states), -1, bsz) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | is_cross_attention | 
					
						
						|  | and past_key_value is not None | 
					
						
						|  | and past_key_value[0].shape[2] == key_value_states.shape[1] | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | key_states = past_key_value[0].transpose(1, 2) | 
					
						
						|  | value_states = past_key_value[1].transpose(1, 2) | 
					
						
						|  | elif is_cross_attention: | 
					
						
						|  |  | 
					
						
						|  | key_states = self._reshape(self.k_proj(key_value_states), -1, bsz) | 
					
						
						|  | value_states = self._reshape(self.v_proj(key_value_states), -1, bsz) | 
					
						
						|  | elif past_key_value is not None: | 
					
						
						|  |  | 
					
						
						|  | key_states = self._reshape(self.k_proj(hidden_states), -1, bsz) | 
					
						
						|  | value_states = self._reshape(self.v_proj(hidden_states), -1, bsz) | 
					
						
						|  | key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1) | 
					
						
						|  | value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | key_states = self._reshape(self.k_proj(hidden_states), -1, bsz) | 
					
						
						|  | value_states = self._reshape(self.v_proj(hidden_states), -1, bsz) | 
					
						
						|  |  | 
					
						
						|  | if self.is_decoder: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2)) | 
					
						
						|  |  | 
					
						
						|  | kv_seq_len = key_states.shape[-2] | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | kv_seq_len += past_key_value[0].shape[-2] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | input_dtype = query_states.dtype | 
					
						
						|  | if input_dtype == torch.float32: | 
					
						
						|  | if torch.is_autocast_enabled(): | 
					
						
						|  | target_dtype = torch.get_autocast_gpu_dtype() | 
					
						
						|  |  | 
					
						
						|  | elif hasattr(self.config, "_pre_quantization_dtype"): | 
					
						
						|  | target_dtype = self.config._pre_quantization_dtype | 
					
						
						|  | else: | 
					
						
						|  | target_dtype = self.q_proj.weight.dtype | 
					
						
						|  |  | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | f"The input hidden states seems to be silently casted in float32, this might be related to" | 
					
						
						|  | f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | 
					
						
						|  | f" {target_dtype}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.to(target_dtype) | 
					
						
						|  | key_states = key_states.to(target_dtype) | 
					
						
						|  | value_states = value_states.to(target_dtype) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self._flash_attention_forward( | 
					
						
						|  | query_states, key_states, value_states, attention_mask, q_len, dropout=self.dropout | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.reshape(bsz, q_len, -1) | 
					
						
						|  | attn_output = self.out_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | if not output_attentions: | 
					
						
						|  | attn_weights = None | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _flash_attention_forward( | 
					
						
						|  | self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | 
					
						
						|  | first unpad the input, then computes the attention scores and pad the final attention scores. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | query_states (`torch.Tensor`): | 
					
						
						|  | Input query states to be passed to Flash Attention API | 
					
						
						|  | key_states (`torch.Tensor`): | 
					
						
						|  | Input key states to be passed to Flash Attention API | 
					
						
						|  | value_states (`torch.Tensor`): | 
					
						
						|  | Input value states to be passed to Flash Attention API | 
					
						
						|  | attention_mask (`torch.Tensor`): | 
					
						
						|  | The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | 
					
						
						|  | position of padding tokens and 1 for the position of non-padding tokens. | 
					
						
						|  | dropout (`float`): | 
					
						
						|  | Attention dropout | 
					
						
						|  | softmax_scale (`float`, *optional*): | 
					
						
						|  | The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | 
					
						
						|  | """ | 
					
						
						|  | if not self._flash_attn_uses_top_left_mask: | 
					
						
						|  | causal = self.is_causal | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | causal = self.is_causal and query_length != 1 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | batch_size = query_states.shape[0] | 
					
						
						|  | query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( | 
					
						
						|  | query_states, key_states, value_states, attention_mask, query_length | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | cu_seqlens_q, cu_seqlens_k = cu_seq_lens | 
					
						
						|  | max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | 
					
						
						|  |  | 
					
						
						|  | attn_output_unpad = flash_attn_varlen_func( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | cu_seqlens_q=cu_seqlens_q, | 
					
						
						|  | cu_seqlens_k=cu_seqlens_k, | 
					
						
						|  | max_seqlen_q=max_seqlen_in_batch_q, | 
					
						
						|  | max_seqlen_k=max_seqlen_in_batch_k, | 
					
						
						|  | dropout_p=dropout, | 
					
						
						|  | softmax_scale=softmax_scale, | 
					
						
						|  | causal=causal, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) | 
					
						
						|  | else: | 
					
						
						|  | attn_output = flash_attn_func( | 
					
						
						|  | query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return attn_output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | 
					
						
						|  | indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | 
					
						
						|  | batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape | 
					
						
						|  |  | 
					
						
						|  | key_layer = index_first_axis( | 
					
						
						|  | key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | 
					
						
						|  | ) | 
					
						
						|  | value_layer = index_first_axis( | 
					
						
						|  | value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | 
					
						
						|  | ) | 
					
						
						|  | if query_length == kv_seq_len: | 
					
						
						|  | query_layer = index_first_axis( | 
					
						
						|  | query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k | 
					
						
						|  | ) | 
					
						
						|  | cu_seqlens_q = cu_seqlens_k | 
					
						
						|  | max_seqlen_in_batch_q = max_seqlen_in_batch_k | 
					
						
						|  | indices_q = indices_k | 
					
						
						|  | elif query_length == 1: | 
					
						
						|  | max_seqlen_in_batch_q = 1 | 
					
						
						|  | cu_seqlens_q = torch.arange( | 
					
						
						|  | batch_size + 1, dtype=torch.int32, device=query_layer.device | 
					
						
						|  | ) | 
					
						
						|  | indices_q = cu_seqlens_q[:-1] | 
					
						
						|  | query_layer = query_layer.squeeze(1) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | attention_mask = attention_mask[:, -query_length:] | 
					
						
						|  | query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) | 
					
						
						|  |  | 
					
						
						|  | return ( | 
					
						
						|  | query_layer, | 
					
						
						|  | key_layer, | 
					
						
						|  | value_layer, | 
					
						
						|  | indices_q, | 
					
						
						|  | (cu_seqlens_q, cu_seqlens_k), | 
					
						
						|  | (max_seqlen_in_batch_q, max_seqlen_in_batch_k), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Florence2SdpaAttention(Florence2Attention): | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | key_value_states: Optional[torch.Tensor] = None, | 
					
						
						|  | past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | layer_head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  | """Input shape: Batch x Time x Channel""" | 
					
						
						|  | if output_attentions or layer_head_mask is not None: | 
					
						
						|  |  | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "Florence2Model is using Florence2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention" | 
					
						
						|  | ' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | 
					
						
						|  | ) | 
					
						
						|  | return super().forward( | 
					
						
						|  | hidden_states, | 
					
						
						|  | key_value_states=key_value_states, | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | layer_head_mask=layer_head_mask, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | is_cross_attention = key_value_states is not None | 
					
						
						|  |  | 
					
						
						|  | bsz, tgt_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_states = self.q_proj(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | is_cross_attention | 
					
						
						|  | and past_key_value is not None | 
					
						
						|  | and past_key_value[0].shape[2] == key_value_states.shape[1] | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | key_states = past_key_value[0] | 
					
						
						|  | value_states = past_key_value[1] | 
					
						
						|  | elif is_cross_attention: | 
					
						
						|  |  | 
					
						
						|  | key_states = self._shape(self.k_proj(key_value_states), -1, bsz) | 
					
						
						|  | value_states = self._shape(self.v_proj(key_value_states), -1, bsz) | 
					
						
						|  | elif past_key_value is not None: | 
					
						
						|  |  | 
					
						
						|  | key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | 
					
						
						|  | value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | 
					
						
						|  | key_states = torch.cat([past_key_value[0], key_states], dim=2) | 
					
						
						|  | value_states = torch.cat([past_key_value[1], value_states], dim=2) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | 
					
						
						|  | value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | 
					
						
						|  |  | 
					
						
						|  | if self.is_decoder: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | past_key_value = (key_states, value_states) | 
					
						
						|  |  | 
					
						
						|  | query_states = self._shape(query_states, tgt_len, bsz) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | is_causal = True if self.is_causal and attention_mask is None and tgt_len > 1 else False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_output = torch.nn.functional.scaled_dot_product_attention( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attn_mask=attention_mask, | 
					
						
						|  | dropout_p=self.dropout if self.training else 0.0, | 
					
						
						|  | is_causal=is_causal, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" | 
					
						
						|  | f" {attn_output.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.out_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | return attn_output, None, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | FLORENCE2_ATTENTION_CLASSES = { | 
					
						
						|  | "eager": Florence2Attention, | 
					
						
						|  | "sdpa": Florence2SdpaAttention, | 
					
						
						|  | "flash_attention_2": Florence2FlashAttention2, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Florence2EncoderLayer(nn.Module): | 
					
						
						|  | def __init__(self, config: Florence2LanguageConfig): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.embed_dim = config.d_model | 
					
						
						|  |  | 
					
						
						|  | self.self_attn = FLORENCE2_ATTENTION_CLASSES[config._attn_implementation]( | 
					
						
						|  | embed_dim=self.embed_dim, | 
					
						
						|  | num_heads=config.encoder_attention_heads, | 
					
						
						|  | dropout=config.attention_dropout, | 
					
						
						|  | config=config, | 
					
						
						|  | ) | 
					
						
						|  | self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) | 
					
						
						|  | self.dropout = config.dropout | 
					
						
						|  | self.activation_fn = ACT2FN[config.activation_function] | 
					
						
						|  | self.activation_dropout = config.activation_dropout | 
					
						
						|  | self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) | 
					
						
						|  | self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) | 
					
						
						|  | self.final_layer_norm = nn.LayerNorm(self.embed_dim) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.FloatTensor, | 
					
						
						|  | attention_mask: torch.FloatTensor, | 
					
						
						|  | layer_head_mask: torch.FloatTensor, | 
					
						
						|  | output_attentions: Optional[bool] = False, | 
					
						
						|  | ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]: | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | 
					
						
						|  | attention_mask (`torch.FloatTensor`): attention mask of size | 
					
						
						|  | `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | 
					
						
						|  | layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size | 
					
						
						|  | `(encoder_attention_heads,)`. | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
						
						|  | returned tensors for more detail. | 
					
						
						|  | """ | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states, attn_weights, _ = self.self_attn( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | layer_head_mask=layer_head_mask, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  | hidden_states = self.self_attn_layer_norm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.activation_fn(self.fc1(hidden_states)) | 
					
						
						|  | hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) | 
					
						
						|  | hidden_states = self.fc2(hidden_states) | 
					
						
						|  | hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  | hidden_states = self.final_layer_norm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | if hidden_states.dtype == torch.float16 and ( | 
					
						
						|  | torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() | 
					
						
						|  | ): | 
					
						
						|  | clamp_value = torch.finfo(hidden_states.dtype).max - 1000 | 
					
						
						|  | hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | 
					
						
						|  |  | 
					
						
						|  | outputs = (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | outputs += (attn_weights,) | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Florence2DecoderLayer(nn.Module): | 
					
						
						|  | def __init__(self, config: Florence2LanguageConfig): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.embed_dim = config.d_model | 
					
						
						|  |  | 
					
						
						|  | self.self_attn = FLORENCE2_ATTENTION_CLASSES[config._attn_implementation]( | 
					
						
						|  | embed_dim=self.embed_dim, | 
					
						
						|  | num_heads=config.decoder_attention_heads, | 
					
						
						|  | dropout=config.attention_dropout, | 
					
						
						|  | is_decoder=True, | 
					
						
						|  | is_causal=True, | 
					
						
						|  | config=config, | 
					
						
						|  | ) | 
					
						
						|  | self.dropout = config.dropout | 
					
						
						|  | self.activation_fn = ACT2FN[config.activation_function] | 
					
						
						|  | self.activation_dropout = config.activation_dropout | 
					
						
						|  |  | 
					
						
						|  | self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) | 
					
						
						|  | self.encoder_attn = FLORENCE2_ATTENTION_CLASSES[config._attn_implementation]( | 
					
						
						|  | self.embed_dim, | 
					
						
						|  | config.decoder_attention_heads, | 
					
						
						|  | dropout=config.attention_dropout, | 
					
						
						|  | is_decoder=True, | 
					
						
						|  | config=config, | 
					
						
						|  | ) | 
					
						
						|  | self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) | 
					
						
						|  | self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) | 
					
						
						|  | self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) | 
					
						
						|  | self.final_layer_norm = nn.LayerNorm(self.embed_dim) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | encoder_hidden_states: Optional[torch.Tensor] = None, | 
					
						
						|  | encoder_attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | layer_head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | cross_attn_layer_head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
						
						|  | output_attentions: Optional[bool] = False, | 
					
						
						|  | use_cache: Optional[bool] = True, | 
					
						
						|  | ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | 
					
						
						|  | attention_mask (`torch.FloatTensor`): attention mask of size | 
					
						
						|  | `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | 
					
						
						|  | encoder_hidden_states (`torch.FloatTensor`): | 
					
						
						|  | cross attention input to the layer of shape `(batch, seq_len, embed_dim)` | 
					
						
						|  | encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size | 
					
						
						|  | `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | 
					
						
						|  | layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size | 
					
						
						|  | `(encoder_attention_heads,)`. | 
					
						
						|  | cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of | 
					
						
						|  | size `(decoder_attention_heads,)`. | 
					
						
						|  | past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
						
						|  | returned tensors for more detail. | 
					
						
						|  | """ | 
					
						
						|  | residual = hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None | 
					
						
						|  |  | 
					
						
						|  | hidden_states, self_attn_weights, present_key_value = self.self_attn( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | past_key_value=self_attn_past_key_value, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | layer_head_mask=layer_head_mask, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  | hidden_states = self.self_attn_layer_norm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cross_attn_present_key_value = None | 
					
						
						|  | cross_attn_weights = None | 
					
						
						|  | if encoder_hidden_states is not None: | 
					
						
						|  | residual = hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None | 
					
						
						|  | hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | key_value_states=encoder_hidden_states, | 
					
						
						|  | attention_mask=encoder_attention_mask, | 
					
						
						|  | layer_head_mask=cross_attn_layer_head_mask, | 
					
						
						|  | past_key_value=cross_attn_past_key_value, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  | hidden_states = self.encoder_attn_layer_norm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | present_key_value = present_key_value + cross_attn_present_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.activation_fn(self.fc1(hidden_states)) | 
					
						
						|  | hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) | 
					
						
						|  | hidden_states = self.fc2(hidden_states) | 
					
						
						|  | hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  | hidden_states = self.final_layer_norm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | outputs = (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | outputs += (self_attn_weights, cross_attn_weights) | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | outputs += (present_key_value,) | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Florence2LanguagePreTrainedModel(PreTrainedModel): | 
					
						
						|  | config_class = Florence2LanguageConfig | 
					
						
						|  | base_model_prefix = "model" | 
					
						
						|  | supports_gradient_checkpointing = True | 
					
						
						|  | _keys_to_ignore_on_load_unexpected = ["encoder.version", "decoder.version"] | 
					
						
						|  | _no_split_modules = [r"Florence2EncoderLayer", r"Florence2DecoderLayer"] | 
					
						
						|  | _skip_keys_device_placement = "past_key_values" | 
					
						
						|  | _supports_flash_attn_2 = True | 
					
						
						|  | _supports_sdpa = True | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, module): | 
					
						
						|  | std = self.config.init_std | 
					
						
						|  | if isinstance(module, nn.Linear): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.bias is not None: | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  | elif isinstance(module, nn.Embedding): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.padding_idx is not None: | 
					
						
						|  | module.weight.data[module.padding_idx].zero_() | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def dummy_inputs(self): | 
					
						
						|  | pad_token = self.config.pad_token_id | 
					
						
						|  | input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device) | 
					
						
						|  | dummy_inputs = { | 
					
						
						|  | "attention_mask": input_ids.ne(pad_token), | 
					
						
						|  | "input_ids": input_ids, | 
					
						
						|  | } | 
					
						
						|  | return dummy_inputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Florence2Encoder(Florence2LanguagePreTrainedModel): | 
					
						
						|  | """ | 
					
						
						|  | Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a | 
					
						
						|  | [`Florence2EncoderLayer`]. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | config: Florence2LanguageConfig | 
					
						
						|  | embed_tokens (nn.Embedding): output embedding | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: Florence2LanguageConfig, embed_tokens: Optional[nn.Embedding] = None): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  |  | 
					
						
						|  | self.dropout = config.dropout | 
					
						
						|  | self.layerdrop = config.encoder_layerdrop | 
					
						
						|  |  | 
					
						
						|  | embed_dim = config.d_model | 
					
						
						|  | self.padding_idx = config.pad_token_id | 
					
						
						|  | self.max_source_positions = config.max_position_embeddings | 
					
						
						|  | embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 | 
					
						
						|  |  | 
					
						
						|  | self.embed_tokens = Florence2ScaledWordEmbedding( | 
					
						
						|  | config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if embed_tokens is not None: | 
					
						
						|  | self.embed_tokens.weight = embed_tokens.weight | 
					
						
						|  |  | 
					
						
						|  | self.embed_positions = Florence2LearnedPositionalEmbedding( | 
					
						
						|  | config.max_position_embeddings, | 
					
						
						|  | embed_dim, | 
					
						
						|  | ) | 
					
						
						|  | self.layers = nn.ModuleList([Florence2EncoderLayer(config) for _ in range(config.encoder_layers)]) | 
					
						
						|  | self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | 
					
						
						|  | self._use_sdpa = config._attn_implementation == "sdpa" | 
					
						
						|  | self.layernorm_embedding = nn.LayerNorm(embed_dim) | 
					
						
						|  |  | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.embed_tokens | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.embed_tokens = value | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, BaseModelOutput]: | 
					
						
						|  | r""" | 
					
						
						|  | Args: | 
					
						
						|  | input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | 
					
						
						|  | Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you | 
					
						
						|  | provide it. | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | [What are input IDs?](../glossary#input-ids) | 
					
						
						|  | attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 for tokens that are **not masked**, | 
					
						
						|  | - 0 for tokens that are **masked**. | 
					
						
						|  |  | 
					
						
						|  | [What are attention masks?](../glossary#attention-mask) | 
					
						
						|  | head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): | 
					
						
						|  | Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 indicates the head is **not masked**, | 
					
						
						|  | - 0 indicates the head is **masked**. | 
					
						
						|  |  | 
					
						
						|  | inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | 
					
						
						|  | Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | 
					
						
						|  | This is useful if you want more control over how to convert `input_ids` indices into associated vectors | 
					
						
						|  | than the model's internal embedding lookup matrix. | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
						
						|  | returned tensors for more detail. | 
					
						
						|  | output_hidden_states (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | 
					
						
						|  | for more detail. | 
					
						
						|  | return_dict (`bool`, *optional*): | 
					
						
						|  | Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
						
						|  | """ | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if input_ids is not None and inputs_embeds is not None: | 
					
						
						|  | raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | 
					
						
						|  | elif input_ids is not None: | 
					
						
						|  | input = input_ids | 
					
						
						|  | input_ids = input_ids.view(-1, input_ids.shape[-1]) | 
					
						
						|  | elif inputs_embeds is not None: | 
					
						
						|  | input = inputs_embeds[:, :, -1] | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError("You have to specify either input_ids or inputs_embeds") | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  | inputs_embeds = self.embed_tokens(input_ids) | 
					
						
						|  |  | 
					
						
						|  | embed_pos = self.embed_positions(input) | 
					
						
						|  | embed_pos = embed_pos.to(inputs_embeds.device) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = inputs_embeds + embed_pos | 
					
						
						|  | hidden_states = self.layernorm_embedding(hidden_states) | 
					
						
						|  | hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | if self._use_flash_attention_2: | 
					
						
						|  | attention_mask = attention_mask if 0 in attention_mask else None | 
					
						
						|  | elif self._use_sdpa and head_mask is None and not output_attentions: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_mask = _prepare_4d_attention_mask_for_sdpa(attention_mask, inputs_embeds.dtype) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) | 
					
						
						|  |  | 
					
						
						|  | encoder_states = () if output_hidden_states else None | 
					
						
						|  | all_attentions = () if output_attentions else None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if head_mask is not None: | 
					
						
						|  | if head_mask.size()[0] != (len(self.layers)): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"The head_mask should be specified for {len(self.layers)} layers, but it is for" | 
					
						
						|  | f" {head_mask.size()[0]}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | for idx, encoder_layer in enumerate(self.layers): | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | encoder_states = encoder_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | to_drop = False | 
					
						
						|  | if self.training: | 
					
						
						|  | dropout_probability = torch.rand([]) | 
					
						
						|  | if dropout_probability < self.layerdrop: | 
					
						
						|  | to_drop = True | 
					
						
						|  |  | 
					
						
						|  | if to_drop: | 
					
						
						|  | layer_outputs = (None, None) | 
					
						
						|  | else: | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | layer_outputs = self._gradient_checkpointing_func( | 
					
						
						|  | encoder_layer.__call__, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | (head_mask[idx] if head_mask is not None else None), | 
					
						
						|  | output_attentions, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | layer_outputs = encoder_layer( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | layer_head_mask=(head_mask[idx] if head_mask is not None else None), | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = layer_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | all_attentions = all_attentions + (layer_outputs[1],) | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | encoder_states = encoder_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) | 
					
						
						|  | return BaseModelOutput( | 
					
						
						|  | last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Florence2Decoder(Florence2LanguagePreTrainedModel): | 
					
						
						|  | """ | 
					
						
						|  | Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`Florence2DecoderLayer`] | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | config: Florence2LanguageConfig | 
					
						
						|  | embed_tokens (nn.Embedding): output embedding | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: Florence2LanguageConfig, embed_tokens: Optional[nn.Embedding] = None): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.dropout = config.dropout | 
					
						
						|  | self.layerdrop = config.decoder_layerdrop | 
					
						
						|  | self.padding_idx = config.pad_token_id | 
					
						
						|  | self.max_target_positions = config.max_position_embeddings | 
					
						
						|  | embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 | 
					
						
						|  |  | 
					
						
						|  | self.embed_tokens = Florence2ScaledWordEmbedding( | 
					
						
						|  | config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if embed_tokens is not None: | 
					
						
						|  | self.embed_tokens.weight = embed_tokens.weight | 
					
						
						|  |  | 
					
						
						|  | self.embed_positions = Florence2LearnedPositionalEmbedding( | 
					
						
						|  | config.max_position_embeddings, | 
					
						
						|  | config.d_model, | 
					
						
						|  | ) | 
					
						
						|  | self.layers = nn.ModuleList([Florence2DecoderLayer(config) for _ in range(config.decoder_layers)]) | 
					
						
						|  | self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | 
					
						
						|  | self._use_sdpa = config._attn_implementation == "sdpa" | 
					
						
						|  |  | 
					
						
						|  | self.layernorm_embedding = nn.LayerNorm(config.d_model) | 
					
						
						|  |  | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.embed_tokens | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.embed_tokens = value | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | encoder_hidden_states: Optional[torch.FloatTensor] = None, | 
					
						
						|  | encoder_attention_mask: Optional[torch.LongTensor] = None, | 
					
						
						|  | head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | cross_attn_head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: | 
					
						
						|  | r""" | 
					
						
						|  | Args: | 
					
						
						|  | input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | 
					
						
						|  | Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you | 
					
						
						|  | provide it. | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | [What are input IDs?](../glossary#input-ids) | 
					
						
						|  | attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 for tokens that are **not masked**, | 
					
						
						|  | - 0 for tokens that are **masked**. | 
					
						
						|  |  | 
					
						
						|  | [What are attention masks?](../glossary#attention-mask) | 
					
						
						|  | encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): | 
					
						
						|  | Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention | 
					
						
						|  | of the decoder. | 
					
						
						|  | encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): | 
					
						
						|  | Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values | 
					
						
						|  | selected in `[0, 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 for tokens that are **not masked**, | 
					
						
						|  | - 0 for tokens that are **masked**. | 
					
						
						|  |  | 
					
						
						|  | [What are attention masks?](../glossary#attention-mask) | 
					
						
						|  | head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | 
					
						
						|  | Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 indicates the head is **not masked**, | 
					
						
						|  | - 0 indicates the head is **masked**. | 
					
						
						|  |  | 
					
						
						|  | cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | 
					
						
						|  | Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing | 
					
						
						|  | cross-attention on hidden heads. Mask values selected in `[0, 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 indicates the head is **not masked**, | 
					
						
						|  | - 0 indicates the head is **masked**. | 
					
						
						|  |  | 
					
						
						|  | past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | 
					
						
						|  | Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | 
					
						
						|  | shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of | 
					
						
						|  | shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | 
					
						
						|  |  | 
					
						
						|  | Contains pre-computed hidden-states (key and values in the self-attention blocks and in the | 
					
						
						|  | cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those | 
					
						
						|  | that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of | 
					
						
						|  | all `decoder_input_ids` of shape `(batch_size, sequence_length)`. | 
					
						
						|  | inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | 
					
						
						|  | Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | 
					
						
						|  | This is useful if you want more control over how to convert `input_ids` indices into associated vectors | 
					
						
						|  | than the model's internal embedding lookup matrix. | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
						
						|  | returned tensors for more detail. | 
					
						
						|  | output_hidden_states (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | 
					
						
						|  | for more detail. | 
					
						
						|  | return_dict (`bool`, *optional*): | 
					
						
						|  | Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
						
						|  | """ | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if input_ids is not None and inputs_embeds is not None: | 
					
						
						|  | raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") | 
					
						
						|  | elif input_ids is not None: | 
					
						
						|  | input = input_ids | 
					
						
						|  | input_shape = input.shape | 
					
						
						|  | input_ids = input_ids.view(-1, input_shape[-1]) | 
					
						
						|  | elif inputs_embeds is not None: | 
					
						
						|  | input_shape = inputs_embeds.size()[:-1] | 
					
						
						|  | input = inputs_embeds[:, :, -1] | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  | inputs_embeds = self.embed_tokens(input) | 
					
						
						|  |  | 
					
						
						|  | if self._use_flash_attention_2: | 
					
						
						|  |  | 
					
						
						|  | attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None | 
					
						
						|  | elif self._use_sdpa and not output_attentions and cross_attn_head_mask is None: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( | 
					
						
						|  | attention_mask, | 
					
						
						|  | input_shape, | 
					
						
						|  | inputs_embeds, | 
					
						
						|  | past_key_values_length, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | attention_mask = _prepare_4d_causal_attention_mask( | 
					
						
						|  | attention_mask, input_shape, inputs_embeds, past_key_values_length | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if encoder_hidden_states is not None and encoder_attention_mask is not None: | 
					
						
						|  | if self._use_flash_attention_2: | 
					
						
						|  | encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None | 
					
						
						|  | elif self._use_sdpa and cross_attn_head_mask is None and not output_attentions: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa( | 
					
						
						|  | encoder_attention_mask, | 
					
						
						|  | inputs_embeds.dtype, | 
					
						
						|  | tgt_len=input_shape[-1], | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | encoder_attention_mask = _prepare_4d_attention_mask( | 
					
						
						|  | encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | positions = self.embed_positions(input, past_key_values_length) | 
					
						
						|  | positions = positions.to(inputs_embeds.device) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = inputs_embeds + positions | 
					
						
						|  | hidden_states = self.layernorm_embedding(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | if use_cache: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | 
					
						
						|  | ) | 
					
						
						|  | use_cache = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | all_hidden_states = () if output_hidden_states else None | 
					
						
						|  | all_self_attns = () if output_attentions else None | 
					
						
						|  | all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None | 
					
						
						|  | next_decoder_cache = () if use_cache else None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): | 
					
						
						|  | if attn_mask is not None: | 
					
						
						|  | if attn_mask.size()[0] != (len(self.layers)): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" | 
					
						
						|  | f" {head_mask.size()[0]}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | for idx, decoder_layer in enumerate(self.layers): | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (hidden_states,) | 
					
						
						|  | if self.training: | 
					
						
						|  | dropout_probability = torch.rand([]) | 
					
						
						|  | if dropout_probability < self.layerdrop: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | past_key_value = past_key_values[idx] if past_key_values is not None else None | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | layer_outputs = self._gradient_checkpointing_func( | 
					
						
						|  | decoder_layer.__call__, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | encoder_hidden_states, | 
					
						
						|  | encoder_attention_mask, | 
					
						
						|  | head_mask[idx] if head_mask is not None else None, | 
					
						
						|  | cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, | 
					
						
						|  | None, | 
					
						
						|  | output_attentions, | 
					
						
						|  | use_cache, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | layer_outputs = decoder_layer( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | encoder_attention_mask=encoder_attention_mask, | 
					
						
						|  | layer_head_mask=(head_mask[idx] if head_mask is not None else None), | 
					
						
						|  | cross_attn_layer_head_mask=( | 
					
						
						|  | cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None | 
					
						
						|  | ), | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = layer_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | all_self_attns += (layer_outputs[1],) | 
					
						
						|  |  | 
					
						
						|  | if encoder_hidden_states is not None: | 
					
						
						|  | all_cross_attentions += (layer_outputs[2],) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | next_cache = next_decoder_cache if use_cache else None | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return tuple( | 
					
						
						|  | v | 
					
						
						|  | for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] | 
					
						
						|  | if v is not None | 
					
						
						|  | ) | 
					
						
						|  | return BaseModelOutputWithPastAndCrossAttentions( | 
					
						
						|  | last_hidden_state=hidden_states, | 
					
						
						|  | past_key_values=next_cache, | 
					
						
						|  | hidden_states=all_hidden_states, | 
					
						
						|  | attentions=all_self_attns, | 
					
						
						|  | cross_attentions=all_cross_attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Florence2LanguageModel(Florence2LanguagePreTrainedModel): | 
					
						
						|  | _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: Florence2LanguageConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  |  | 
					
						
						|  | padding_idx, vocab_size = config.pad_token_id, config.vocab_size | 
					
						
						|  | self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx) | 
					
						
						|  |  | 
					
						
						|  | self.encoder = Florence2Encoder(config, self.shared) | 
					
						
						|  | self.decoder = Florence2Decoder(config, self.shared) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def _tie_weights(self): | 
					
						
						|  | if self.config.tie_word_embeddings: | 
					
						
						|  | self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) | 
					
						
						|  | self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.shared | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.shared = value | 
					
						
						|  | self.encoder.embed_tokens = self.shared | 
					
						
						|  | self.decoder.embed_tokens = self.shared | 
					
						
						|  |  | 
					
						
						|  | def get_encoder(self): | 
					
						
						|  | return self.encoder | 
					
						
						|  |  | 
					
						
						|  | def get_decoder(self): | 
					
						
						|  | return self.decoder | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | decoder_input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | decoder_attention_mask: Optional[torch.LongTensor] = None, | 
					
						
						|  | head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | decoder_head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | cross_attn_head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | encoder_outputs: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, Seq2SeqModelOutput]: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if decoder_input_ids is None and decoder_inputs_embeds is None: | 
					
						
						|  | if input_ids is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "If no `decoder_input_ids` or `decoder_inputs_embeds` are " | 
					
						
						|  | "passed, `input_ids` cannot be `None`. Please pass either " | 
					
						
						|  | "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | decoder_input_ids = shift_tokens_right( | 
					
						
						|  | input_ids, self.config.pad_token_id, self.config.decoder_start_token_id | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | if encoder_outputs is None: | 
					
						
						|  | encoder_outputs = self.encoder( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | 
					
						
						|  | encoder_outputs = BaseModelOutput( | 
					
						
						|  | last_hidden_state=encoder_outputs[0], | 
					
						
						|  | hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | 
					
						
						|  | attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | decoder_outputs = self.decoder( | 
					
						
						|  | input_ids=decoder_input_ids, | 
					
						
						|  | attention_mask=decoder_attention_mask, | 
					
						
						|  | encoder_hidden_states=encoder_outputs[0], | 
					
						
						|  | encoder_attention_mask=attention_mask, | 
					
						
						|  | head_mask=decoder_head_mask, | 
					
						
						|  | cross_attn_head_mask=cross_attn_head_mask, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=decoder_inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return decoder_outputs + encoder_outputs | 
					
						
						|  |  | 
					
						
						|  | return Seq2SeqModelOutput( | 
					
						
						|  | last_hidden_state=decoder_outputs.last_hidden_state, | 
					
						
						|  | past_key_values=decoder_outputs.past_key_values, | 
					
						
						|  | decoder_hidden_states=decoder_outputs.hidden_states, | 
					
						
						|  | decoder_attentions=decoder_outputs.attentions, | 
					
						
						|  | cross_attentions=decoder_outputs.cross_attentions, | 
					
						
						|  | encoder_last_hidden_state=encoder_outputs.last_hidden_state, | 
					
						
						|  | encoder_hidden_states=encoder_outputs.hidden_states, | 
					
						
						|  | encoder_attentions=encoder_outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Florence2LanguageForConditionalGeneration(Florence2LanguagePreTrainedModel): | 
					
						
						|  | base_model_prefix = "model" | 
					
						
						|  | _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"] | 
					
						
						|  | _keys_to_ignore_on_load_missing = ["final_logits_bias"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: Florence2LanguageConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.model = Florence2LanguageModel(config) | 
					
						
						|  | self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings))) | 
					
						
						|  | self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_encoder(self): | 
					
						
						|  | return self.model.get_encoder() | 
					
						
						|  |  | 
					
						
						|  | def get_decoder(self): | 
					
						
						|  | return self.model.get_decoder() | 
					
						
						|  |  | 
					
						
						|  | def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding: | 
					
						
						|  | new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of) | 
					
						
						|  | self._resize_final_logits_bias(new_embeddings.weight.shape[0]) | 
					
						
						|  | return new_embeddings | 
					
						
						|  |  | 
					
						
						|  | def _resize_final_logits_bias(self, new_num_tokens: int) -> None: | 
					
						
						|  | old_num_tokens = self.final_logits_bias.shape[-1] | 
					
						
						|  | if new_num_tokens <= old_num_tokens: | 
					
						
						|  | new_bias = self.final_logits_bias[:, :new_num_tokens] | 
					
						
						|  | else: | 
					
						
						|  | extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device) | 
					
						
						|  | new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1) | 
					
						
						|  | self.register_buffer("final_logits_bias", new_bias) | 
					
						
						|  |  | 
					
						
						|  | def get_output_embeddings(self): | 
					
						
						|  | return self.lm_head | 
					
						
						|  |  | 
					
						
						|  | def set_output_embeddings(self, new_embeddings): | 
					
						
						|  | self.lm_head = new_embeddings | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | decoder_input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | decoder_attention_mask: Optional[torch.LongTensor] = None, | 
					
						
						|  | head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | decoder_head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | cross_attn_head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | encoder_outputs: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, Seq2SeqLMOutput]: | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | 
					
						
						|  | config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | 
					
						
						|  | (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | if labels is not None: | 
					
						
						|  | if use_cache: | 
					
						
						|  | logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") | 
					
						
						|  | use_cache = False | 
					
						
						|  | if decoder_input_ids is None and decoder_inputs_embeds is None: | 
					
						
						|  | decoder_input_ids = shift_tokens_right( | 
					
						
						|  | labels, self.config.pad_token_id, self.config.decoder_start_token_id | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | outputs = self.model( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | decoder_input_ids=decoder_input_ids, | 
					
						
						|  | encoder_outputs=encoder_outputs, | 
					
						
						|  | decoder_attention_mask=decoder_attention_mask, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | decoder_head_mask=decoder_head_mask, | 
					
						
						|  | cross_attn_head_mask=cross_attn_head_mask, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | decoder_inputs_embeds=decoder_inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | lm_logits = self.lm_head(outputs[0]) | 
					
						
						|  | lm_logits = lm_logits + self.final_logits_bias.to(lm_logits.device) | 
					
						
						|  |  | 
					
						
						|  | masked_lm_loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | labels = labels.to(lm_logits.device) | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (lm_logits,) + outputs[1:] | 
					
						
						|  | return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return Seq2SeqLMOutput( | 
					
						
						|  | loss=masked_lm_loss, | 
					
						
						|  | logits=lm_logits, | 
					
						
						|  | past_key_values=outputs.past_key_values, | 
					
						
						|  | decoder_hidden_states=outputs.decoder_hidden_states, | 
					
						
						|  | decoder_attentions=outputs.decoder_attentions, | 
					
						
						|  | cross_attentions=outputs.cross_attentions, | 
					
						
						|  | encoder_last_hidden_state=outputs.encoder_last_hidden_state, | 
					
						
						|  | encoder_hidden_states=outputs.encoder_hidden_states, | 
					
						
						|  | encoder_attentions=outputs.encoder_attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def prepare_inputs_for_generation( | 
					
						
						|  | self, | 
					
						
						|  | decoder_input_ids, | 
					
						
						|  | past_key_values=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | decoder_attention_mask=None, | 
					
						
						|  | head_mask=None, | 
					
						
						|  | decoder_head_mask=None, | 
					
						
						|  | cross_attn_head_mask=None, | 
					
						
						|  | use_cache=None, | 
					
						
						|  | encoder_outputs=None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | if past_key_values is not None: | 
					
						
						|  | past_length = past_key_values[0][0].shape[2] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if decoder_input_ids.shape[1] > past_length: | 
					
						
						|  | remove_prefix_length = past_length | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | remove_prefix_length = decoder_input_ids.shape[1] - 1 | 
					
						
						|  |  | 
					
						
						|  | decoder_input_ids = decoder_input_ids[:, remove_prefix_length:] | 
					
						
						|  |  | 
					
						
						|  | return { | 
					
						
						|  | "input_ids": None, | 
					
						
						|  | "encoder_outputs": encoder_outputs, | 
					
						
						|  | "past_key_values": past_key_values, | 
					
						
						|  | "decoder_input_ids": decoder_input_ids, | 
					
						
						|  | "attention_mask": attention_mask, | 
					
						
						|  | "decoder_attention_mask": decoder_attention_mask, | 
					
						
						|  | "head_mask": head_mask, | 
					
						
						|  | "decoder_head_mask": decoder_head_mask, | 
					
						
						|  | "cross_attn_head_mask": cross_attn_head_mask, | 
					
						
						|  | "use_cache": use_cache, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): | 
					
						
						|  | return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def _reorder_cache(past_key_values, beam_idx): | 
					
						
						|  | reordered_past = () | 
					
						
						|  | for layer_past in past_key_values: | 
					
						
						|  |  | 
					
						
						|  | reordered_past += ( | 
					
						
						|  | tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2]) | 
					
						
						|  | + layer_past[2:], | 
					
						
						|  | ) | 
					
						
						|  | return reordered_past | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class Florence2Seq2SeqLMOutput(ModelOutput): | 
					
						
						|  | """ | 
					
						
						|  | Base class for Florence-2 model's outputs that also contains : pre-computed hidden states that can speed up sequential | 
					
						
						|  | decoding. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | 
					
						
						|  | Language modeling loss. | 
					
						
						|  | logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | 
					
						
						|  | Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | 
					
						
						|  | last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | 
					
						
						|  | Sequence of hidden-states at the output of the last layer of the decoder of the model. | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, | 
					
						
						|  | hidden_size)` is output. | 
					
						
						|  | past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | 
					
						
						|  | Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | 
					
						
						|  | `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | 
					
						
						|  | `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | 
					
						
						|  |  | 
					
						
						|  | Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | 
					
						
						|  | blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | 
					
						
						|  | decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | 
					
						
						|  | one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | 
					
						
						|  |  | 
					
						
						|  | Hidden-states of the decoder at the output of each layer plus the optional initial embedding outputs. | 
					
						
						|  | decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | 
					
						
						|  | sequence_length)`. | 
					
						
						|  |  | 
					
						
						|  | Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the | 
					
						
						|  | self-attention heads. | 
					
						
						|  | cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | 
					
						
						|  | sequence_length)`. | 
					
						
						|  |  | 
					
						
						|  | Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the | 
					
						
						|  | weighted average in the cross-attention heads. | 
					
						
						|  | encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | 
					
						
						|  | Sequence of hidden-states at the output of the last layer of the encoder of the model. | 
					
						
						|  | encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | 
					
						
						|  | one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | 
					
						
						|  |  | 
					
						
						|  | Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs. | 
					
						
						|  | encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | 
					
						
						|  | sequence_length)`. | 
					
						
						|  |  | 
					
						
						|  | Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the | 
					
						
						|  | self-attention heads. | 
					
						
						|  | image_hidden_states (`tuple(torch.FloatTensor)`, *optional*): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, | 
					
						
						|  | num_image_tokens, hidden_size)`. | 
					
						
						|  |  | 
					
						
						|  | image_hidden_states of the model produced by the vision encoder | 
					
						
						|  | """ | 
					
						
						|  | loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | logits: torch.FloatTensor = None | 
					
						
						|  | last_hidden_state: torch.FloatTensor = None | 
					
						
						|  | past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None | 
					
						
						|  | decoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | 
					
						
						|  | decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | 
					
						
						|  | cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | 
					
						
						|  | encoder_last_hidden_state: Optional[torch.FloatTensor] = None | 
					
						
						|  | encoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | 
					
						
						|  | encoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | 
					
						
						|  | image_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | FLORENCE2_START_DOCSTRING = r""" | 
					
						
						|  | This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | 
					
						
						|  | library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | 
					
						
						|  | etc.) | 
					
						
						|  |  | 
					
						
						|  | This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | 
					
						
						|  | Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | 
					
						
						|  | and behavior. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | config ([`Florence2Config`] or [`Florence2VisionConfig`]): | 
					
						
						|  | Model configuration class with all the parameters of the model. Initializing with a config file does not | 
					
						
						|  | load the weights associated with the model, only the configuration. Check out the | 
					
						
						|  | [`~PreTrainedModel.from_pretrained`] method to load the model weights. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The bare Florence-2 Model outputting raw hidden-states without any specific head on top.", | 
					
						
						|  | FLORENCE2_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class Florence2PreTrainedModel(PreTrainedModel): | 
					
						
						|  | config_class = Florence2Config | 
					
						
						|  | base_model_prefix = "model" | 
					
						
						|  | supports_gradient_checkpointing = True | 
					
						
						|  | _skip_keys_device_placement = "past_key_values" | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def _supports_flash_attn_2(self): | 
					
						
						|  | """ | 
					
						
						|  | Retrieve language_model's attribute to check whether the model supports | 
					
						
						|  | Flash Attention 2 or not. | 
					
						
						|  | """ | 
					
						
						|  | return self.language_model._supports_flash_attn_2 | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def _supports_sdpa(self): | 
					
						
						|  | """ | 
					
						
						|  | Retrieve language_model's attribute to check whether the model supports | 
					
						
						|  | SDPA or not. | 
					
						
						|  | """ | 
					
						
						|  | return self.language_model._supports_sdpa | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | FLORENCE2_INPUTS_DOCSTRING = r""" | 
					
						
						|  | Args: | 
					
						
						|  | input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | 
					
						
						|  | Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | 
					
						
						|  | it. | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | [What are input IDs?](../glossary#input-ids) | 
					
						
						|  | pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): | 
					
						
						|  | The tensors corresponding to the input images. Pixel values can be obtained using | 
					
						
						|  | [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details ([]`Florence2Processor`] uses | 
					
						
						|  | [`CLIPImageProcessor`] for processing images). | 
					
						
						|  | attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 for tokens that are **not masked**, | 
					
						
						|  | - 0 for tokens that are **masked**. | 
					
						
						|  |  | 
					
						
						|  | [What are attention masks?](../glossary#attention-mask) | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  |  | 
					
						
						|  | If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | 
					
						
						|  | and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | 
					
						
						|  | information on the default strategy. | 
					
						
						|  |  | 
					
						
						|  | - 1 indicates the head is **not masked**, | 
					
						
						|  | - 0 indicates the head is **masked**. | 
					
						
						|  | position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | 
					
						
						|  | config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) | 
					
						
						|  | past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | 
					
						
						|  | Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | 
					
						
						|  | `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | 
					
						
						|  | `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | 
					
						
						|  |  | 
					
						
						|  | Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | 
					
						
						|  | blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | 
					
						
						|  | don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | 
					
						
						|  | `decoder_input_ids` of shape `(batch_size, sequence_length)`. | 
					
						
						|  | inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | 
					
						
						|  | Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | 
					
						
						|  | is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | 
					
						
						|  | model's internal embedding lookup matrix. | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | 
					
						
						|  | tensors for more detail. | 
					
						
						|  | output_hidden_states (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | 
					
						
						|  | more detail. | 
					
						
						|  | return_dict (`bool`, *optional*): | 
					
						
						|  | Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """The FLORENCE2 vision model without any head""", | 
					
						
						|  | FLORENCE2_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class Florence2VisionModel(Florence2PreTrainedModel): | 
					
						
						|  | def __init__(self, config: Florence2VisionConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | assert config.model_type == 'davit', 'only DaViT is supported for now' | 
					
						
						|  | self.vision_tower = DaViT.from_config(config=config) | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def forward(self, pixel_values): | 
					
						
						|  | if len(pixel_values.shape) == 4: | 
					
						
						|  | x = self.vision_tower.forward_features_unpool(pixel_values) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f'invalid image shape {pixel_values.shape}') | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """The FLORENCE2 vision model with projection layer""", | 
					
						
						|  | FLORENCE2_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class Florence2VisionModelWithProjection(Florence2PreTrainedModel): | 
					
						
						|  | def __init__(self, config: Florence2VisionConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | assert config.model_type == 'davit', 'only DaViT is supported for now' | 
					
						
						|  | self.vision_tower = DaViT.from_config(config=config) | 
					
						
						|  |  | 
					
						
						|  | self._build_image_projection_layers(config) | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def _build_image_projection_layers(self, config): | 
					
						
						|  | image_dim_out = config.dim_embed[-1] | 
					
						
						|  | dim_projection = config.projection_dim | 
					
						
						|  | self.image_projection = nn.Parameter( | 
					
						
						|  | torch.empty(image_dim_out, dim_projection) | 
					
						
						|  | ) | 
					
						
						|  | self.image_proj_norm = nn.LayerNorm(dim_projection) | 
					
						
						|  | image_pos_embed_config = config.image_pos_embed | 
					
						
						|  | if image_pos_embed_config['type'] == 'learned_abs_2d': | 
					
						
						|  | self.image_pos_embed = LearnedAbsolutePositionEmbedding2D( | 
					
						
						|  | embedding_dim=image_dim_out, | 
					
						
						|  | num_pos=image_pos_embed_config['max_pos_embeddings'] | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError('Not implemented yet') | 
					
						
						|  |  | 
					
						
						|  | self.image_feature_source = config.image_feature_source | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | visual_temporal_embedding_config = config.visual_temporal_embedding | 
					
						
						|  | if visual_temporal_embedding_config['type'] == 'COSINE': | 
					
						
						|  | self.visual_temporal_embed = PositionalEmbeddingCosine1D( | 
					
						
						|  | embed_dim=image_dim_out, | 
					
						
						|  | max_seq_len=visual_temporal_embedding_config['max_temporal_embeddings'] | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError('Not implemented yet') | 
					
						
						|  |  | 
					
						
						|  | def forward(self, pixel_values): | 
					
						
						|  | if len(pixel_values.shape) == 4: | 
					
						
						|  | batch_size, C, H, W = pixel_values.shape | 
					
						
						|  | T = 1 | 
					
						
						|  | x = self.vision_tower.forward_features_unpool(pixel_values) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f'invalid image shape {pixel_values.shape}') | 
					
						
						|  |  | 
					
						
						|  | if self.image_pos_embed is not None: | 
					
						
						|  | x = x.view(batch_size * T, -1, x.shape[-1]) | 
					
						
						|  | num_tokens = x.shape[-2] | 
					
						
						|  | h, w = int(num_tokens ** 0.5), int(num_tokens ** 0.5) | 
					
						
						|  | assert h * w == num_tokens, 'only support square feature maps for now' | 
					
						
						|  | x = x.view(batch_size * T, h, w, x.shape[-1]) | 
					
						
						|  | pos_embed = self.image_pos_embed(x) | 
					
						
						|  | x = x + pos_embed | 
					
						
						|  | x = x.view(batch_size, T * h*w, x.shape[-1]) | 
					
						
						|  |  | 
					
						
						|  | if self.visual_temporal_embed is not None: | 
					
						
						|  | visual_temporal_embed = self.visual_temporal_embed(x.view(batch_size, T, -1, x.shape[-1])[:, :, 0]) | 
					
						
						|  | x = x.view(batch_size, T, -1, x.shape[-1]) + visual_temporal_embed.view(1, T, 1, x.shape[-1]) | 
					
						
						|  |  | 
					
						
						|  | x_feat_dict = {} | 
					
						
						|  |  | 
					
						
						|  | spatial_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=2) | 
					
						
						|  | x_feat_dict['spatial_avg_pool'] = spatial_avg_pool_x | 
					
						
						|  |  | 
					
						
						|  | temporal_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=1) | 
					
						
						|  | x_feat_dict['temporal_avg_pool'] = temporal_avg_pool_x | 
					
						
						|  |  | 
					
						
						|  | x = x.view(batch_size, T, -1, x.shape[-1])[:, -1] | 
					
						
						|  | x_feat_dict['last_frame'] = x | 
					
						
						|  |  | 
					
						
						|  | new_x = [] | 
					
						
						|  | for _image_feature_source in self.image_feature_source: | 
					
						
						|  | if _image_feature_source not in x_feat_dict: | 
					
						
						|  | raise ValueError('invalid image feature source: {}'.format(_image_feature_source)) | 
					
						
						|  | new_x.append(x_feat_dict[_image_feature_source]) | 
					
						
						|  |  | 
					
						
						|  | x = torch.cat(new_x, dim=1) | 
					
						
						|  |  | 
					
						
						|  | x = x @ self.image_projection | 
					
						
						|  | x = self.image_proj_norm(x) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """The FLORENCE2 model which consists of a vision backbone and a language model.""", | 
					
						
						|  | FLORENCE2_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class Florence2ForConditionalGeneration(Florence2PreTrainedModel): | 
					
						
						|  | def __init__(self, config: Florence2Config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | assert config.vision_config.model_type == 'davit', 'only DaViT is supported for now' | 
					
						
						|  | self.vision_tower = DaViT.from_config(config=config.vision_config) | 
					
						
						|  |  | 
					
						
						|  | del self.vision_tower.head | 
					
						
						|  | del self.vision_tower.norms | 
					
						
						|  |  | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  | self._attn_implementation = config._attn_implementation | 
					
						
						|  | self._build_image_projection_layers(config) | 
					
						
						|  |  | 
					
						
						|  | language_model = Florence2LanguageForConditionalGeneration(config=config.text_config) | 
					
						
						|  |  | 
					
						
						|  | if language_model._tied_weights_keys is not None: | 
					
						
						|  | self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys] | 
					
						
						|  | self.language_model = language_model | 
					
						
						|  |  | 
					
						
						|  | self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def _build_image_projection_layers(self, config): | 
					
						
						|  | image_dim_out = config.vision_config.dim_embed[-1] | 
					
						
						|  | dim_projection = config.vision_config.projection_dim | 
					
						
						|  | self.image_projection = nn.Parameter( | 
					
						
						|  | torch.empty(image_dim_out, dim_projection) | 
					
						
						|  | ) | 
					
						
						|  | self.image_proj_norm = nn.LayerNorm(dim_projection) | 
					
						
						|  | image_pos_embed_config = config.vision_config.image_pos_embed | 
					
						
						|  | if image_pos_embed_config['type'] == 'learned_abs_2d': | 
					
						
						|  | self.image_pos_embed = LearnedAbsolutePositionEmbedding2D( | 
					
						
						|  | embedding_dim=image_dim_out, | 
					
						
						|  | num_pos=image_pos_embed_config['max_pos_embeddings'] | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError('Not implemented yet') | 
					
						
						|  |  | 
					
						
						|  | self.image_feature_source = config.vision_config.image_feature_source | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | visual_temporal_embedding_config = config.vision_config.visual_temporal_embedding | 
					
						
						|  | if visual_temporal_embedding_config['type'] == 'COSINE': | 
					
						
						|  | self.visual_temporal_embed = PositionalEmbeddingCosine1D( | 
					
						
						|  | embed_dim=image_dim_out, | 
					
						
						|  | max_seq_len=visual_temporal_embedding_config['max_temporal_embeddings'] | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError('Not implemented yet') | 
					
						
						|  |  | 
					
						
						|  | def get_encoder(self): | 
					
						
						|  | return self.language_model.get_encoder() | 
					
						
						|  |  | 
					
						
						|  | def get_decoder(self): | 
					
						
						|  | return self.language_model.get_decoder() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.language_model.get_input_embeddings() | 
					
						
						|  |  | 
					
						
						|  | def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding: | 
					
						
						|  | model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of) | 
					
						
						|  |  | 
					
						
						|  | self.config.text_config.vocab_size = model_embeds.num_embeddings | 
					
						
						|  | self.config.vocab_size = model_embeds.num_embeddings | 
					
						
						|  | self.vocab_size = model_embeds.num_embeddings | 
					
						
						|  | return model_embeds | 
					
						
						|  |  | 
					
						
						|  | def _encode_image(self, pixel_values): | 
					
						
						|  | if len(pixel_values.shape) == 4: | 
					
						
						|  | batch_size, C, H, W = pixel_values.shape | 
					
						
						|  | T = 1 | 
					
						
						|  | x = self.vision_tower.forward_features_unpool(pixel_values) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f'invalid image shape {pixel_values.shape}') | 
					
						
						|  |  | 
					
						
						|  | if self.image_pos_embed is not None: | 
					
						
						|  | x = x.view(batch_size * T, -1, x.shape[-1]) | 
					
						
						|  | num_tokens = x.shape[-2] | 
					
						
						|  | h, w = int(num_tokens ** 0.5), int(num_tokens ** 0.5) | 
					
						
						|  | assert h * w == num_tokens, 'only support square feature maps for now' | 
					
						
						|  | x = x.view(batch_size * T, h, w, x.shape[-1]) | 
					
						
						|  | pos_embed = self.image_pos_embed(x) | 
					
						
						|  | x = x + pos_embed | 
					
						
						|  | x = x.view(batch_size, T * h*w, x.shape[-1]) | 
					
						
						|  |  | 
					
						
						|  | if self.visual_temporal_embed is not None: | 
					
						
						|  | visual_temporal_embed = self.visual_temporal_embed(x.view(batch_size, T, -1, x.shape[-1])[:, :, 0]) | 
					
						
						|  | x = x.view(batch_size, T, -1, x.shape[-1]) + visual_temporal_embed.view(1, T, 1, x.shape[-1]) | 
					
						
						|  |  | 
					
						
						|  | x_feat_dict = {} | 
					
						
						|  |  | 
					
						
						|  | spatial_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=2) | 
					
						
						|  | x_feat_dict['spatial_avg_pool'] = spatial_avg_pool_x | 
					
						
						|  |  | 
					
						
						|  | temporal_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=1) | 
					
						
						|  | x_feat_dict['temporal_avg_pool'] = temporal_avg_pool_x | 
					
						
						|  |  | 
					
						
						|  | x = x.view(batch_size, T, -1, x.shape[-1])[:, -1] | 
					
						
						|  | x_feat_dict['last_frame'] = x | 
					
						
						|  |  | 
					
						
						|  | new_x = [] | 
					
						
						|  | for _image_feature_source in self.image_feature_source: | 
					
						
						|  | if _image_feature_source not in x_feat_dict: | 
					
						
						|  | raise ValueError('invalid image feature source: {}'.format(_image_feature_source)) | 
					
						
						|  | new_x.append(x_feat_dict[_image_feature_source]) | 
					
						
						|  |  | 
					
						
						|  | x = torch.cat(new_x, dim=1) | 
					
						
						|  |  | 
					
						
						|  | x = x @ self.image_projection | 
					
						
						|  | x = self.image_proj_norm(x) | 
					
						
						|  |  | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | def _merge_input_ids_with_image_features( | 
					
						
						|  | self, image_features, inputs_embeds | 
					
						
						|  | ): | 
					
						
						|  | batch_size, image_token_length = image_features.size()[:-1] | 
					
						
						|  | device = image_features.device | 
					
						
						|  | image_attention_mask = torch.ones(batch_size, image_token_length, device=device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  | return image_features, image_attention_mask | 
					
						
						|  |  | 
					
						
						|  | task_prefix_embeds = inputs_embeds | 
					
						
						|  | task_prefix_attention_mask = torch.ones(batch_size, task_prefix_embeds.size(1), device=device) | 
					
						
						|  |  | 
					
						
						|  | if len(task_prefix_attention_mask.shape) == 3: | 
					
						
						|  | task_prefix_attention_mask = task_prefix_attention_mask[:, 0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | inputs_embeds = torch.cat([image_features, task_prefix_embeds], dim=1) | 
					
						
						|  | attention_mask = torch.cat([image_attention_mask, task_prefix_attention_mask], dim=1) | 
					
						
						|  |  | 
					
						
						|  | return inputs_embeds, attention_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(FLORENCE2_INPUTS_DOCSTRING) | 
					
						
						|  | @replace_return_docstrings(output_type=Florence2Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | pixel_values: torch.FloatTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | decoder_input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | decoder_attention_mask: Optional[torch.LongTensor] = None, | 
					
						
						|  | head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | decoder_head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | cross_attn_head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | encoder_outputs: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, Florence2Seq2SeqLMOutput]: | 
					
						
						|  | r""" | 
					
						
						|  | Args: | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | 
					
						
						|  | config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | 
					
						
						|  | (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | >>> from PIL import Image | 
					
						
						|  | >>> import requests | 
					
						
						|  | >>> from transformers import AutoProcessor, Florence2ForConditionalGeneration | 
					
						
						|  |  | 
					
						
						|  | >>> model = Florence2ForConditionalGeneration.from_pretrained("microsoft/Florence-2-large") | 
					
						
						|  | >>> processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large") | 
					
						
						|  |  | 
					
						
						|  | >>> prompt = "<CAPTION>" | 
					
						
						|  | >>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg" | 
					
						
						|  | >>> image = Image.open(requests.get(url, stream=True).raw) | 
					
						
						|  |  | 
					
						
						|  | >>> inputs = processor(text=prompt, images=image, return_tensors="pt") | 
					
						
						|  |  | 
					
						
						|  | >>> # Generate | 
					
						
						|  | >>> generate_ids = model.generate(**inputs, max_length=100) | 
					
						
						|  | >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | 
					
						
						|  | "A green car parked in front of a yellow building." | 
					
						
						|  | ```""" | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | image_features = None | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  |  | 
					
						
						|  | if input_ids is not None: | 
					
						
						|  | inputs_embeds = self.get_input_embeddings()(input_ids) | 
					
						
						|  |  | 
					
						
						|  | if pixel_values is not None: | 
					
						
						|  |  | 
					
						
						|  | image_features = self._encode_image(pixel_values) | 
					
						
						|  | inputs_embeds, attention_mask = self._merge_input_ids_with_image_features(image_features, inputs_embeds) | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is not None: | 
					
						
						|  | attention_mask = attention_mask.to(inputs_embeds.dtype) | 
					
						
						|  | outputs = self.language_model( | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | labels=labels, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | decoder_input_ids=decoder_input_ids, | 
					
						
						|  | encoder_outputs=encoder_outputs, | 
					
						
						|  | decoder_attention_mask=decoder_attention_mask, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | decoder_head_mask=decoder_head_mask, | 
					
						
						|  | cross_attn_head_mask=cross_attn_head_mask, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | decoder_inputs_embeds=decoder_inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | logits = outputs.logits | 
					
						
						|  | logits = logits.float() | 
					
						
						|  | loss = outputs.loss | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits,) + outputs[1:] | 
					
						
						|  | return (loss,) + output if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return Florence2Seq2SeqLMOutput( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | past_key_values=outputs.past_key_values, | 
					
						
						|  | decoder_hidden_states=outputs.decoder_hidden_states, | 
					
						
						|  | decoder_attentions=outputs.decoder_attentions, | 
					
						
						|  | cross_attentions=outputs.cross_attentions, | 
					
						
						|  | encoder_last_hidden_state=outputs.encoder_last_hidden_state, | 
					
						
						|  | encoder_hidden_states=outputs.encoder_hidden_states, | 
					
						
						|  | encoder_attentions=outputs.encoder_attentions, | 
					
						
						|  | image_hidden_states=image_features | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def generate( | 
					
						
						|  | self, | 
					
						
						|  | input_ids, | 
					
						
						|  | inputs_embeds=None, | 
					
						
						|  | pixel_values=None, | 
					
						
						|  | **kwargs | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  |  | 
					
						
						|  | if input_ids is not None: | 
					
						
						|  | inputs_embeds = self.get_input_embeddings()(input_ids) | 
					
						
						|  |  | 
					
						
						|  | if pixel_values is not None: | 
					
						
						|  | image_features = self._encode_image(pixel_values) | 
					
						
						|  | inputs_embeds, attention_mask = self._merge_input_ids_with_image_features(image_features, inputs_embeds) | 
					
						
						|  |  | 
					
						
						|  | return self.language_model.generate( | 
					
						
						|  | input_ids=None, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | **kwargs | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def prepare_inputs_for_generation( | 
					
						
						|  | self, | 
					
						
						|  | decoder_input_ids, | 
					
						
						|  | past_key_values=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | pixel_values=None, | 
					
						
						|  | decoder_attention_mask=None, | 
					
						
						|  | head_mask=None, | 
					
						
						|  | decoder_head_mask=None, | 
					
						
						|  | cross_attn_head_mask=None, | 
					
						
						|  | use_cache=None, | 
					
						
						|  | encoder_outputs=None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | if past_key_values is not None: | 
					
						
						|  | past_length = past_key_values[0][0].shape[2] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if decoder_input_ids.shape[1] > past_length: | 
					
						
						|  | remove_prefix_length = past_length | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | remove_prefix_length = decoder_input_ids.shape[1] - 1 | 
					
						
						|  |  | 
					
						
						|  | decoder_input_ids = decoder_input_ids[:, remove_prefix_length:] | 
					
						
						|  |  | 
					
						
						|  | return { | 
					
						
						|  | "input_ids": None, | 
					
						
						|  | "encoder_outputs": encoder_outputs, | 
					
						
						|  | "past_key_values": past_key_values, | 
					
						
						|  | "decoder_input_ids": decoder_input_ids, | 
					
						
						|  | "attention_mask": attention_mask, | 
					
						
						|  | "pixel_values": pixel_values, | 
					
						
						|  | "decoder_attention_mask": decoder_attention_mask, | 
					
						
						|  | "head_mask": head_mask, | 
					
						
						|  | "decoder_head_mask": decoder_head_mask, | 
					
						
						|  | "cross_attn_head_mask": cross_attn_head_mask, | 
					
						
						|  | "use_cache": use_cache, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): | 
					
						
						|  | return self.language_model.shift_tokens_right(labels) | 
					
						
						|  |  | 
					
						
						|  | def _reorder_cache(self, *args, **kwargs): | 
					
						
						|  | return self.language_model._reorder_cache(*args, **kwargs) |