mateoguaman commited on
Commit
3ea3e46
·
verified ·
1 Parent(s): 1e6f16a

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +5 -0
  2. README.md +62 -0
  3. adapter_config.json +37 -0
  4. adapter_model.safetensors +3 -0
  5. all_results.json +13 -0
  6. checkpoint-1790/README.md +202 -0
  7. checkpoint-1790/adapter_config.json +37 -0
  8. checkpoint-1790/adapter_model.safetensors +3 -0
  9. checkpoint-1790/optimizer.pt +3 -0
  10. checkpoint-1790/preprocessor_config.json +25 -0
  11. checkpoint-1790/rng_state_0.pth +3 -0
  12. checkpoint-1790/rng_state_1.pth +3 -0
  13. checkpoint-1790/rng_state_2.pth +3 -0
  14. checkpoint-1790/rng_state_3.pth +3 -0
  15. checkpoint-1790/rng_state_4.pth +3 -0
  16. checkpoint-1790/rng_state_5.pth +3 -0
  17. checkpoint-1790/rng_state_6.pth +3 -0
  18. checkpoint-1790/scheduler.pt +3 -0
  19. checkpoint-1790/special_tokens_map.json +39 -0
  20. checkpoint-1790/tokenizer.json +3 -0
  21. checkpoint-1790/tokenizer_config.json +0 -0
  22. checkpoint-1790/trainer_state.json +762 -0
  23. checkpoint-1790/training_args.bin +3 -0
  24. checkpoint-3580/README.md +202 -0
  25. checkpoint-3580/adapter_config.json +37 -0
  26. checkpoint-3580/adapter_model.safetensors +3 -0
  27. checkpoint-3580/optimizer.pt +3 -0
  28. checkpoint-3580/preprocessor_config.json +25 -0
  29. checkpoint-3580/rng_state_0.pth +3 -0
  30. checkpoint-3580/rng_state_1.pth +3 -0
  31. checkpoint-3580/rng_state_2.pth +3 -0
  32. checkpoint-3580/rng_state_3.pth +3 -0
  33. checkpoint-3580/rng_state_4.pth +3 -0
  34. checkpoint-3580/rng_state_5.pth +3 -0
  35. checkpoint-3580/rng_state_6.pth +3 -0
  36. checkpoint-3580/scheduler.pt +3 -0
  37. checkpoint-3580/special_tokens_map.json +39 -0
  38. checkpoint-3580/tokenizer.json +3 -0
  39. checkpoint-3580/tokenizer_config.json +0 -0
  40. checkpoint-3580/trainer_state.json +1491 -0
  41. checkpoint-3580/training_args.bin +3 -0
  42. checkpoint-5370/README.md +202 -0
  43. checkpoint-5370/adapter_config.json +37 -0
  44. checkpoint-5370/adapter_model.safetensors +3 -0
  45. checkpoint-5370/optimizer.pt +3 -0
  46. checkpoint-5370/preprocessor_config.json +25 -0
  47. checkpoint-5370/rng_state_0.pth +3 -0
  48. checkpoint-5370/rng_state_1.pth +3 -0
  49. checkpoint-5370/rng_state_2.pth +3 -0
  50. checkpoint-5370/rng_state_3.pth +3 -0
.gitattributes CHANGED
@@ -33,3 +33,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoint-1790/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ checkpoint-3580/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
+ checkpoint-5370/tokenizer.json filter=lfs diff=lfs merge=lfs -text
39
+ checkpoint-7159/tokenizer.json filter=lfs diff=lfs merge=lfs -text
40
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: google/paligemma2-3b-pt-224
3
+ datasets:
4
+ - mateoguaman/tartandrive_every1_100pct_sub5
5
+ - mateoguaman/scand_every1_50pct_sub5
6
+ - mateoguaman/coda_every1_25pct_sub5
7
+ - mateoguaman/spot_every1_sub5
8
+ library_name: transformers
9
+ model_name: google/paligemma2-3b-pt-224
10
+ tags:
11
+ - generated_from_trainer
12
+ - alignment-handbook
13
+ licence: license
14
+ ---
15
+
16
+ # Model Card for google/paligemma2-3b-pt-224
17
+
18
+ This model is a fine-tuned version of [google/paligemma2-3b-pt-224](https://huggingface.co/google/paligemma2-3b-pt-224) on the [mateoguaman/tartandrive_every1_100pct_sub5, mateoguaman/scand_every1_50pct_sub5, mateoguaman/coda_every1_25pct_sub5, mateoguaman/spot_every1_sub5](https://huggingface.co/datasets/mateoguaman/tartandrive_every1_100pct_sub5, mateoguaman/scand_every1_50pct_sub5, mateoguaman/coda_every1_25pct_sub5, mateoguaman/spot_every1_sub5) dataset.
19
+ It has been trained using [TRL](https://github.com/huggingface/trl).
20
+
21
+ ## Quick start
22
+
23
+ ```python
24
+ from transformers import pipeline
25
+
26
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
27
+ generator = pipeline("text-generation", model="None", device="cuda")
28
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
29
+ print(output["generated_text"])
30
+ ```
31
+
32
+ ## Training procedure
33
+
34
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/mateoguaman/paligemma2-3b-pt-224-sft-lora-magicsoup_no_cfiphone_no_insta_sub5/runs/18gvxs3p)
35
+
36
+
37
+ This model was trained with SFT.
38
+
39
+ ### Framework versions
40
+
41
+ - TRL: 0.15.2
42
+ - Transformers: 4.49.0
43
+ - Pytorch: 2.6.0
44
+ - Datasets: 3.4.1
45
+ - Tokenizers: 0.21.1
46
+
47
+ ## Citations
48
+
49
+
50
+
51
+ Cite TRL as:
52
+
53
+ ```bibtex
54
+ @misc{vonwerra2022trl,
55
+ title = {{TRL: Transformer Reinforcement Learning}},
56
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
57
+ year = 2020,
58
+ journal = {GitHub repository},
59
+ publisher = {GitHub},
60
+ howpublished = {\url{https://github.com/huggingface/trl}}
61
+ }
62
+ ```
adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "google/paligemma2-3b-pt-224",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "v_proj",
27
+ "down_proj",
28
+ "q_proj",
29
+ "gate_proj",
30
+ "o_proj",
31
+ "up_proj",
32
+ "k_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b3a29027603ad585b95a3f8a197b7b66d595de8cd0f5d357d31901f9c0c4d41
3
+ size 95091000
all_results.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eval_loss": 2.6793947219848633,
3
+ "eval_runtime": 986.6097,
4
+ "eval_samples": 98330,
5
+ "eval_samples_per_second": 99.665,
6
+ "eval_steps_per_second": 1.78,
7
+ "total_flos": 1.6530020885331968e+18,
8
+ "train_loss": 2.734565882330451,
9
+ "train_runtime": 21227.811,
10
+ "train_samples": 400874,
11
+ "train_samples_per_second": 18.884,
12
+ "train_steps_per_second": 0.337
13
+ }
checkpoint-1790/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: google/paligemma2-3b-pt-224
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-1790/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "google/paligemma2-3b-pt-224",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "v_proj",
27
+ "down_proj",
28
+ "q_proj",
29
+ "gate_proj",
30
+ "o_proj",
31
+ "up_proj",
32
+ "k_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
checkpoint-1790/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:338781eb5ed8d4656dc9064bb32f93c45b7fde84b7f258f62be7378b19b68f43
3
+ size 95091000
checkpoint-1790/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2be12ac8ed105ec7f3954f008cb9311d09a0025967e94e4bc3494e6c740da849
3
+ size 190464380
checkpoint-1790/preprocessor_config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": null,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.5,
8
+ 0.5,
9
+ 0.5
10
+ ],
11
+ "image_processor_type": "SiglipImageProcessor",
12
+ "image_seq_length": 256,
13
+ "image_std": [
14
+ 0.5,
15
+ 0.5,
16
+ 0.5
17
+ ],
18
+ "processor_class": "PaliGemmaProcessor",
19
+ "resample": 3,
20
+ "rescale_factor": 0.00392156862745098,
21
+ "size": {
22
+ "height": 224,
23
+ "width": 224
24
+ }
25
+ }
checkpoint-1790/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d121544ff08cc85db822b5bd88696133f4f2410dbf43e82436ff396a90595a19
3
+ size 15728
checkpoint-1790/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d43295cbedbf83f71238f30de059a893797e2c45828797868a34ef1d43d5d0a1
3
+ size 15728
checkpoint-1790/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cae2cf5e03d87b11df349625a32b0f91d9bfe583600ef42db6e7e71d6b31a1a
3
+ size 15728
checkpoint-1790/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdfa6f2c2a28da25f6c07356c094597f916db6a84e40b2ac9c7d3267932d973f
3
+ size 15728
checkpoint-1790/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6356d4df66ef4bddef2c0edecc42c3d151db908af612f464e4bd24dec8a6041f
3
+ size 15728
checkpoint-1790/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d74250a98eaebcccbc40cd0315e9711fddaf62bbb734bcb9bd816dcf8b1147f
3
+ size 15728
checkpoint-1790/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87a7701fddfcdf867276bc6ca50838615604dba177c5cf42a790cd77ab1cad31
3
+ size 15728
checkpoint-1790/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1ef6693df802992c17d4e17e7ac52d71c3bfdc3ac17267eae6d126f9c104fcb
3
+ size 1064
checkpoint-1790/special_tokens_map.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<image>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ }
10
+ ],
11
+ "bos_token": {
12
+ "content": "<bos>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "eos_token": {
19
+ "content": "<eos>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "pad_token": {
26
+ "content": "<pad>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ },
32
+ "unk_token": {
33
+ "content": "<unk>",
34
+ "lstrip": false,
35
+ "normalized": false,
36
+ "rstrip": false,
37
+ "single_word": false
38
+ }
39
+ }
checkpoint-1790/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b648d11e0879b11659e6b4051f691752c0cef597a865c6fde5b318b9f68c1d05
3
+ size 34600974
checkpoint-1790/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1790/trainer_state.json ADDED
@@ -0,0 +1,762 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 2.7205357551574707,
3
+ "best_model_checkpoint": "data/paligemma2-3b-pt-224-sft-lora-magicsoup_no_cfiphone_no_insta_sub5/checkpoint-1790",
4
+ "epoch": 0.2500349210783629,
5
+ "eval_steps": 1790,
6
+ "global_step": 1790,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0001396843134515994,
13
+ "grad_norm": 11.714253425598145,
14
+ "learning_rate": 1.3966480446927375e-07,
15
+ "loss": 15.8723,
16
+ "mean_token_accuracy": 0.051948051899671555,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.0027936862690319877,
21
+ "grad_norm": 11.453227996826172,
22
+ "learning_rate": 2.7932960893854746e-06,
23
+ "loss": 15.6868,
24
+ "mean_token_accuracy": 0.04536910433518259,
25
+ "step": 20
26
+ },
27
+ {
28
+ "epoch": 0.0055873725380639755,
29
+ "grad_norm": 14.288809776306152,
30
+ "learning_rate": 5.586592178770949e-06,
31
+ "loss": 15.2233,
32
+ "mean_token_accuracy": 0.04797077886760235,
33
+ "step": 40
34
+ },
35
+ {
36
+ "epoch": 0.008381058807095963,
37
+ "grad_norm": 15.974210739135742,
38
+ "learning_rate": 8.379888268156424e-06,
39
+ "loss": 12.5816,
40
+ "mean_token_accuracy": 0.06761363632977009,
41
+ "step": 60
42
+ },
43
+ {
44
+ "epoch": 0.011174745076127951,
45
+ "grad_norm": 8.255433082580566,
46
+ "learning_rate": 1.1173184357541899e-05,
47
+ "loss": 8.1704,
48
+ "mean_token_accuracy": 0.019724026112817226,
49
+ "step": 80
50
+ },
51
+ {
52
+ "epoch": 0.013968431345159939,
53
+ "grad_norm": 4.060810565948486,
54
+ "learning_rate": 1.3966480446927374e-05,
55
+ "loss": 5.8302,
56
+ "mean_token_accuracy": 0.0771915590390563,
57
+ "step": 100
58
+ },
59
+ {
60
+ "epoch": 0.016762117614191926,
61
+ "grad_norm": 5.3958940505981445,
62
+ "learning_rate": 1.675977653631285e-05,
63
+ "loss": 5.1183,
64
+ "mean_token_accuracy": 0.09870129823684692,
65
+ "step": 120
66
+ },
67
+ {
68
+ "epoch": 0.019555803883223914,
69
+ "grad_norm": 6.21713924407959,
70
+ "learning_rate": 1.9553072625698323e-05,
71
+ "loss": 4.6938,
72
+ "mean_token_accuracy": 0.11225649379193783,
73
+ "step": 140
74
+ },
75
+ {
76
+ "epoch": 0.022349490152255902,
77
+ "grad_norm": 10.742652893066406,
78
+ "learning_rate": 2.2346368715083797e-05,
79
+ "loss": 4.375,
80
+ "mean_token_accuracy": 0.12938311770558358,
81
+ "step": 160
82
+ },
83
+ {
84
+ "epoch": 0.02514317642128789,
85
+ "grad_norm": 14.718498229980469,
86
+ "learning_rate": 2.5139664804469275e-05,
87
+ "loss": 4.1989,
88
+ "mean_token_accuracy": 0.16461038812994958,
89
+ "step": 180
90
+ },
91
+ {
92
+ "epoch": 0.027936862690319877,
93
+ "grad_norm": 10.117100715637207,
94
+ "learning_rate": 2.793296089385475e-05,
95
+ "loss": 3.8056,
96
+ "mean_token_accuracy": 0.2379870109260082,
97
+ "step": 200
98
+ },
99
+ {
100
+ "epoch": 0.030730548959351865,
101
+ "grad_norm": 6.335511207580566,
102
+ "learning_rate": 3.0726256983240227e-05,
103
+ "loss": 3.5194,
104
+ "mean_token_accuracy": 0.2828733794391155,
105
+ "step": 220
106
+ },
107
+ {
108
+ "epoch": 0.03352423522838385,
109
+ "grad_norm": 8.714235305786133,
110
+ "learning_rate": 3.35195530726257e-05,
111
+ "loss": 3.4042,
112
+ "mean_token_accuracy": 0.2905844166874886,
113
+ "step": 240
114
+ },
115
+ {
116
+ "epoch": 0.03631792149741584,
117
+ "grad_norm": 28.925806045532227,
118
+ "learning_rate": 3.6312849162011175e-05,
119
+ "loss": 3.3014,
120
+ "mean_token_accuracy": 0.30211039036512377,
121
+ "step": 260
122
+ },
123
+ {
124
+ "epoch": 0.03911160776644783,
125
+ "grad_norm": 7.385269641876221,
126
+ "learning_rate": 3.9106145251396646e-05,
127
+ "loss": 3.2824,
128
+ "mean_token_accuracy": 0.2980519443750381,
129
+ "step": 280
130
+ },
131
+ {
132
+ "epoch": 0.041905294035479816,
133
+ "grad_norm": 26.001882553100586,
134
+ "learning_rate": 4.1899441340782123e-05,
135
+ "loss": 3.2237,
136
+ "mean_token_accuracy": 0.3021103873848915,
137
+ "step": 300
138
+ },
139
+ {
140
+ "epoch": 0.044698980304511804,
141
+ "grad_norm": 6.193004131317139,
142
+ "learning_rate": 4.4692737430167594e-05,
143
+ "loss": 3.1911,
144
+ "mean_token_accuracy": 0.3050324633717537,
145
+ "step": 320
146
+ },
147
+ {
148
+ "epoch": 0.04749266657354379,
149
+ "grad_norm": 10.755631446838379,
150
+ "learning_rate": 4.748603351955307e-05,
151
+ "loss": 3.1985,
152
+ "mean_token_accuracy": 0.30081168562173843,
153
+ "step": 340
154
+ },
155
+ {
156
+ "epoch": 0.05028635284257578,
157
+ "grad_norm": 13.610740661621094,
158
+ "learning_rate": 5.027932960893855e-05,
159
+ "loss": 3.1074,
160
+ "mean_token_accuracy": 0.31006493270397184,
161
+ "step": 360
162
+ },
163
+ {
164
+ "epoch": 0.05308003911160777,
165
+ "grad_norm": 7.772305011749268,
166
+ "learning_rate": 5.307262569832403e-05,
167
+ "loss": 3.0981,
168
+ "mean_token_accuracy": 0.3107142850756645,
169
+ "step": 380
170
+ },
171
+ {
172
+ "epoch": 0.055873725380639755,
173
+ "grad_norm": 8.072247505187988,
174
+ "learning_rate": 5.58659217877095e-05,
175
+ "loss": 3.0943,
176
+ "mean_token_accuracy": 0.31095779240131377,
177
+ "step": 400
178
+ },
179
+ {
180
+ "epoch": 0.05866741164967174,
181
+ "grad_norm": 7.870853900909424,
182
+ "learning_rate": 5.8659217877094976e-05,
183
+ "loss": 3.0422,
184
+ "mean_token_accuracy": 0.31168831288814547,
185
+ "step": 420
186
+ },
187
+ {
188
+ "epoch": 0.06146109791870373,
189
+ "grad_norm": 19.650827407836914,
190
+ "learning_rate": 6.145251396648045e-05,
191
+ "loss": 3.085,
192
+ "mean_token_accuracy": 0.31087662279605865,
193
+ "step": 440
194
+ },
195
+ {
196
+ "epoch": 0.06425478418773571,
197
+ "grad_norm": 17.583972930908203,
198
+ "learning_rate": 6.424581005586592e-05,
199
+ "loss": 3.0207,
200
+ "mean_token_accuracy": 0.3114448055624962,
201
+ "step": 460
202
+ },
203
+ {
204
+ "epoch": 0.0670484704567677,
205
+ "grad_norm": 8.581819534301758,
206
+ "learning_rate": 6.70391061452514e-05,
207
+ "loss": 3.0396,
208
+ "mean_token_accuracy": 0.31160714030265807,
209
+ "step": 480
210
+ },
211
+ {
212
+ "epoch": 0.06984215672579969,
213
+ "grad_norm": 10.295416831970215,
214
+ "learning_rate": 6.983240223463688e-05,
215
+ "loss": 3.0311,
216
+ "mean_token_accuracy": 0.3094155818223953,
217
+ "step": 500
218
+ },
219
+ {
220
+ "epoch": 0.07263584299483168,
221
+ "grad_norm": 11.54842472076416,
222
+ "learning_rate": 7.262569832402235e-05,
223
+ "loss": 2.9806,
224
+ "mean_token_accuracy": 0.3171266242861748,
225
+ "step": 520
226
+ },
227
+ {
228
+ "epoch": 0.07542952926386366,
229
+ "grad_norm": 6.4206743240356445,
230
+ "learning_rate": 7.541899441340783e-05,
231
+ "loss": 3.0046,
232
+ "mean_token_accuracy": 0.3163961052894592,
233
+ "step": 540
234
+ },
235
+ {
236
+ "epoch": 0.07822321553289566,
237
+ "grad_norm": 6.957503795623779,
238
+ "learning_rate": 7.821229050279329e-05,
239
+ "loss": 2.9919,
240
+ "mean_token_accuracy": 0.31185064762830733,
241
+ "step": 560
242
+ },
243
+ {
244
+ "epoch": 0.08101690180192764,
245
+ "grad_norm": 4.134042263031006,
246
+ "learning_rate": 8.100558659217878e-05,
247
+ "loss": 3.0287,
248
+ "mean_token_accuracy": 0.3153409093618393,
249
+ "step": 580
250
+ },
251
+ {
252
+ "epoch": 0.08381058807095963,
253
+ "grad_norm": 5.571300029754639,
254
+ "learning_rate": 8.379888268156425e-05,
255
+ "loss": 2.9836,
256
+ "mean_token_accuracy": 0.31599026173353195,
257
+ "step": 600
258
+ },
259
+ {
260
+ "epoch": 0.08660427433999161,
261
+ "grad_norm": 5.823517799377441,
262
+ "learning_rate": 8.659217877094973e-05,
263
+ "loss": 2.9693,
264
+ "mean_token_accuracy": 0.3173701331019402,
265
+ "step": 620
266
+ },
267
+ {
268
+ "epoch": 0.08939796060902361,
269
+ "grad_norm": 5.942770004272461,
270
+ "learning_rate": 8.938547486033519e-05,
271
+ "loss": 2.957,
272
+ "mean_token_accuracy": 0.32094155699014665,
273
+ "step": 640
274
+ },
275
+ {
276
+ "epoch": 0.09219164687805559,
277
+ "grad_norm": 5.494757175445557,
278
+ "learning_rate": 9.217877094972067e-05,
279
+ "loss": 2.9391,
280
+ "mean_token_accuracy": 0.3202922075986862,
281
+ "step": 660
282
+ },
283
+ {
284
+ "epoch": 0.09498533314708758,
285
+ "grad_norm": 3.7874789237976074,
286
+ "learning_rate": 9.497206703910614e-05,
287
+ "loss": 2.9662,
288
+ "mean_token_accuracy": 0.318506495654583,
289
+ "step": 680
290
+ },
291
+ {
292
+ "epoch": 0.09777901941611956,
293
+ "grad_norm": 4.3834733963012695,
294
+ "learning_rate": 9.776536312849163e-05,
295
+ "loss": 2.9742,
296
+ "mean_token_accuracy": 0.315259738266468,
297
+ "step": 700
298
+ },
299
+ {
300
+ "epoch": 0.10057270568515156,
301
+ "grad_norm": 3.8033530712127686,
302
+ "learning_rate": 9.999990489938263e-05,
303
+ "loss": 2.9255,
304
+ "mean_token_accuracy": 0.3217532455921173,
305
+ "step": 720
306
+ },
307
+ {
308
+ "epoch": 0.10336639195418354,
309
+ "grad_norm": 5.953765869140625,
310
+ "learning_rate": 9.99965764157593e-05,
311
+ "loss": 2.8773,
312
+ "mean_token_accuracy": 0.32402597516775133,
313
+ "step": 740
314
+ },
315
+ {
316
+ "epoch": 0.10616007822321553,
317
+ "grad_norm": 8.89194107055664,
318
+ "learning_rate": 9.998849326302563e-05,
319
+ "loss": 2.9062,
320
+ "mean_token_accuracy": 0.3172889605164528,
321
+ "step": 760
322
+ },
323
+ {
324
+ "epoch": 0.10895376449224752,
325
+ "grad_norm": 4.883932113647461,
326
+ "learning_rate": 9.997565620988856e-05,
327
+ "loss": 2.889,
328
+ "mean_token_accuracy": 0.324594159424305,
329
+ "step": 780
330
+ },
331
+ {
332
+ "epoch": 0.11174745076127951,
333
+ "grad_norm": 6.9450297355651855,
334
+ "learning_rate": 9.995806647715047e-05,
335
+ "loss": 2.902,
336
+ "mean_token_accuracy": 0.319155840575695,
337
+ "step": 800
338
+ },
339
+ {
340
+ "epoch": 0.11454113703031149,
341
+ "grad_norm": 3.826904296875,
342
+ "learning_rate": 9.99357257375931e-05,
343
+ "loss": 2.845,
344
+ "mean_token_accuracy": 0.32288961112499237,
345
+ "step": 820
346
+ },
347
+ {
348
+ "epoch": 0.11733482329934349,
349
+ "grad_norm": 3.4276959896087646,
350
+ "learning_rate": 9.99086361158184e-05,
351
+ "loss": 2.8776,
352
+ "mean_token_accuracy": 0.31899350732564924,
353
+ "step": 840
354
+ },
355
+ {
356
+ "epoch": 0.12012850956837547,
357
+ "grad_norm": 4.847935199737549,
358
+ "learning_rate": 9.987680018804652e-05,
359
+ "loss": 2.8714,
360
+ "mean_token_accuracy": 0.32126623690128325,
361
+ "step": 860
362
+ },
363
+ {
364
+ "epoch": 0.12292219583740746,
365
+ "grad_norm": 3.4353716373443604,
366
+ "learning_rate": 9.984022098187083e-05,
367
+ "loss": 2.8408,
368
+ "mean_token_accuracy": 0.3215097412467003,
369
+ "step": 880
370
+ },
371
+ {
372
+ "epoch": 0.12571588210643944,
373
+ "grad_norm": 4.255288600921631,
374
+ "learning_rate": 9.979890197596993e-05,
375
+ "loss": 2.887,
376
+ "mean_token_accuracy": 0.3237824708223343,
377
+ "step": 900
378
+ },
379
+ {
380
+ "epoch": 0.12850956837547142,
381
+ "grad_norm": 4.189087867736816,
382
+ "learning_rate": 9.97528470997769e-05,
383
+ "loss": 2.8593,
384
+ "mean_token_accuracy": 0.324756495654583,
385
+ "step": 920
386
+ },
387
+ {
388
+ "epoch": 0.13130325464450343,
389
+ "grad_norm": 2.641284227371216,
390
+ "learning_rate": 9.97020607331056e-05,
391
+ "loss": 2.8606,
392
+ "mean_token_accuracy": 0.32142857313156126,
393
+ "step": 940
394
+ },
395
+ {
396
+ "epoch": 0.1340969409135354,
397
+ "grad_norm": 2.688258171081543,
398
+ "learning_rate": 9.964654770573408e-05,
399
+ "loss": 2.8676,
400
+ "mean_token_accuracy": 0.32646103799343107,
401
+ "step": 960
402
+ },
403
+ {
404
+ "epoch": 0.1368906271825674,
405
+ "grad_norm": 3.801523208618164,
406
+ "learning_rate": 9.958631329694537e-05,
407
+ "loss": 2.8623,
408
+ "mean_token_accuracy": 0.3244318202137947,
409
+ "step": 980
410
+ },
411
+ {
412
+ "epoch": 0.13968431345159937,
413
+ "grad_norm": 3.528196334838867,
414
+ "learning_rate": 9.952136323502536e-05,
415
+ "loss": 2.865,
416
+ "mean_token_accuracy": 0.32459415644407275,
417
+ "step": 1000
418
+ },
419
+ {
420
+ "epoch": 0.14247799972063138,
421
+ "grad_norm": 3.970863103866577,
422
+ "learning_rate": 9.945170369671802e-05,
423
+ "loss": 2.8762,
424
+ "mean_token_accuracy": 0.32102272659540176,
425
+ "step": 1020
426
+ },
427
+ {
428
+ "epoch": 0.14527168598966336,
429
+ "grad_norm": 4.364096641540527,
430
+ "learning_rate": 9.937734130663807e-05,
431
+ "loss": 2.8521,
432
+ "mean_token_accuracy": 0.321185065805912,
433
+ "step": 1040
434
+ },
435
+ {
436
+ "epoch": 0.14806537225869534,
437
+ "grad_norm": 2.6619839668273926,
438
+ "learning_rate": 9.92982831366409e-05,
439
+ "loss": 2.8557,
440
+ "mean_token_accuracy": 0.32167208194732666,
441
+ "step": 1060
442
+ },
443
+ {
444
+ "epoch": 0.15085905852772732,
445
+ "grad_norm": 2.8934223651885986,
446
+ "learning_rate": 9.921453670515009e-05,
447
+ "loss": 2.8138,
448
+ "mean_token_accuracy": 0.3263798728585243,
449
+ "step": 1080
450
+ },
451
+ {
452
+ "epoch": 0.15365274479675933,
453
+ "grad_norm": 3.3745875358581543,
454
+ "learning_rate": 9.91261099764424e-05,
455
+ "loss": 2.8387,
456
+ "mean_token_accuracy": 0.3244318187236786,
457
+ "step": 1100
458
+ },
459
+ {
460
+ "epoch": 0.1564464310657913,
461
+ "grad_norm": 3.961806297302246,
462
+ "learning_rate": 9.903301135989032e-05,
463
+ "loss": 2.833,
464
+ "mean_token_accuracy": 0.324918831884861,
465
+ "step": 1120
466
+ },
467
+ {
468
+ "epoch": 0.1592401173348233,
469
+ "grad_norm": 2.1680517196655273,
470
+ "learning_rate": 9.893524970916242e-05,
471
+ "loss": 2.8295,
472
+ "mean_token_accuracy": 0.3221590921282768,
473
+ "step": 1140
474
+ },
475
+ {
476
+ "epoch": 0.16203380360385528,
477
+ "grad_norm": 2.9997398853302,
478
+ "learning_rate": 9.883283432138129e-05,
479
+ "loss": 2.8284,
480
+ "mean_token_accuracy": 0.32670454382896424,
481
+ "step": 1160
482
+ },
483
+ {
484
+ "epoch": 0.16482748987288728,
485
+ "grad_norm": 6.048096656799316,
486
+ "learning_rate": 9.872577493623945e-05,
487
+ "loss": 2.814,
488
+ "mean_token_accuracy": 0.3250811696052551,
489
+ "step": 1180
490
+ },
491
+ {
492
+ "epoch": 0.16762117614191926,
493
+ "grad_norm": 2.815396547317505,
494
+ "learning_rate": 9.861408173507304e-05,
495
+ "loss": 2.8529,
496
+ "mean_token_accuracy": 0.32467532753944395,
497
+ "step": 1200
498
+ },
499
+ {
500
+ "epoch": 0.17041486241095125,
501
+ "grad_norm": 4.112369537353516,
502
+ "learning_rate": 9.849776533989369e-05,
503
+ "loss": 2.7942,
504
+ "mean_token_accuracy": 0.327272729575634,
505
+ "step": 1220
506
+ },
507
+ {
508
+ "epoch": 0.17320854867998323,
509
+ "grad_norm": 2.6627895832061768,
510
+ "learning_rate": 9.837683681237819e-05,
511
+ "loss": 2.8087,
512
+ "mean_token_accuracy": 0.3275974065065384,
513
+ "step": 1240
514
+ },
515
+ {
516
+ "epoch": 0.17600223494901523,
517
+ "grad_norm": 3.526514768600464,
518
+ "learning_rate": 9.825130765281668e-05,
519
+ "loss": 2.8224,
520
+ "mean_token_accuracy": 0.32508117258548735,
521
+ "step": 1260
522
+ },
523
+ {
524
+ "epoch": 0.17879592121804722,
525
+ "grad_norm": 3.236506938934326,
526
+ "learning_rate": 9.812118979901891e-05,
527
+ "loss": 2.8373,
528
+ "mean_token_accuracy": 0.32394480556249616,
529
+ "step": 1280
530
+ },
531
+ {
532
+ "epoch": 0.1815896074870792,
533
+ "grad_norm": 3.168816566467285,
534
+ "learning_rate": 9.7986495625179e-05,
535
+ "loss": 2.8059,
536
+ "mean_token_accuracy": 0.3279220789670944,
537
+ "step": 1300
538
+ },
539
+ {
540
+ "epoch": 0.18438329375611118,
541
+ "grad_norm": 4.702609062194824,
542
+ "learning_rate": 9.784723794069852e-05,
543
+ "loss": 2.7648,
544
+ "mean_token_accuracy": 0.33125000149011613,
545
+ "step": 1320
546
+ },
547
+ {
548
+ "epoch": 0.18717698002514319,
549
+ "grad_norm": 3.00978684425354,
550
+ "learning_rate": 9.770342998896851e-05,
551
+ "loss": 2.8123,
552
+ "mean_token_accuracy": 0.32670454680919647,
553
+ "step": 1340
554
+ },
555
+ {
556
+ "epoch": 0.18997066629417517,
557
+ "grad_norm": 5.219450950622559,
558
+ "learning_rate": 9.755508544610994e-05,
559
+ "loss": 2.7966,
560
+ "mean_token_accuracy": 0.3340097412467003,
561
+ "step": 1360
562
+ },
563
+ {
564
+ "epoch": 0.19276435256320715,
565
+ "grad_norm": 2.8464038372039795,
566
+ "learning_rate": 9.740221841967307e-05,
567
+ "loss": 2.7738,
568
+ "mean_token_accuracy": 0.32849026173353196,
569
+ "step": 1380
570
+ },
571
+ {
572
+ "epoch": 0.19555803883223913,
573
+ "grad_norm": 3.846038341522217,
574
+ "learning_rate": 9.72448434472959e-05,
575
+ "loss": 2.7938,
576
+ "mean_token_accuracy": 0.3283279240131378,
577
+ "step": 1400
578
+ },
579
+ {
580
+ "epoch": 0.19835172510127114,
581
+ "grad_norm": 2.432882070541382,
582
+ "learning_rate": 9.708297549532157e-05,
583
+ "loss": 2.7805,
584
+ "mean_token_accuracy": 0.329788963496685,
585
+ "step": 1420
586
+ },
587
+ {
588
+ "epoch": 0.20114541137030312,
589
+ "grad_norm": 2.405036687850952,
590
+ "learning_rate": 9.691662995737516e-05,
591
+ "loss": 2.7497,
592
+ "mean_token_accuracy": 0.327353897690773,
593
+ "step": 1440
594
+ },
595
+ {
596
+ "epoch": 0.2039390976393351,
597
+ "grad_norm": 2.1323699951171875,
598
+ "learning_rate": 9.674582265289967e-05,
599
+ "loss": 2.7859,
600
+ "mean_token_accuracy": 0.3321428596973419,
601
+ "step": 1460
602
+ },
603
+ {
604
+ "epoch": 0.20673278390836708,
605
+ "grad_norm": 4.102099418640137,
606
+ "learning_rate": 9.657056982565161e-05,
607
+ "loss": 2.8042,
608
+ "mean_token_accuracy": 0.3272727280855179,
609
+ "step": 1480
610
+ },
611
+ {
612
+ "epoch": 0.2095264701773991,
613
+ "grad_norm": 3.1227469444274902,
614
+ "learning_rate": 9.639088814215627e-05,
615
+ "loss": 2.774,
616
+ "mean_token_accuracy": 0.32987013161182405,
617
+ "step": 1500
618
+ },
619
+ {
620
+ "epoch": 0.21232015644643107,
621
+ "grad_norm": 2.4661705493927,
622
+ "learning_rate": 9.620679469012266e-05,
623
+ "loss": 2.7377,
624
+ "mean_token_accuracy": 0.3315746784210205,
625
+ "step": 1520
626
+ },
627
+ {
628
+ "epoch": 0.21511384271546305,
629
+ "grad_norm": 3.3351097106933594,
630
+ "learning_rate": 9.601830697681853e-05,
631
+ "loss": 2.7786,
632
+ "mean_token_accuracy": 0.3308441549539566,
633
+ "step": 1540
634
+ },
635
+ {
636
+ "epoch": 0.21790752898449503,
637
+ "grad_norm": 2.9032342433929443,
638
+ "learning_rate": 9.582544292740542e-05,
639
+ "loss": 2.7485,
640
+ "mean_token_accuracy": 0.33076298981904984,
641
+ "step": 1560
642
+ },
643
+ {
644
+ "epoch": 0.22070121525352704,
645
+ "grad_norm": 2.4244565963745117,
646
+ "learning_rate": 9.562822088323396e-05,
647
+ "loss": 2.765,
648
+ "mean_token_accuracy": 0.3307629868388176,
649
+ "step": 1580
650
+ },
651
+ {
652
+ "epoch": 0.22349490152255902,
653
+ "grad_norm": 2.1915383338928223,
654
+ "learning_rate": 9.542665960009959e-05,
655
+ "loss": 2.7455,
656
+ "mean_token_accuracy": 0.33303571343421934,
657
+ "step": 1600
658
+ },
659
+ {
660
+ "epoch": 0.226288587791591,
661
+ "grad_norm": 4.944774150848389,
662
+ "learning_rate": 9.522077824645896e-05,
663
+ "loss": 2.7786,
664
+ "mean_token_accuracy": 0.3247564971446991,
665
+ "step": 1620
666
+ },
667
+ {
668
+ "epoch": 0.22908227406062298,
669
+ "grad_norm": 3.094341993331909,
670
+ "learning_rate": 9.501059640160696e-05,
671
+ "loss": 2.7678,
672
+ "mean_token_accuracy": 0.32930195033550264,
673
+ "step": 1640
674
+ },
675
+ {
676
+ "epoch": 0.231875960329655,
677
+ "grad_norm": 3.0549888610839844,
678
+ "learning_rate": 9.479613405381474e-05,
679
+ "loss": 2.7392,
680
+ "mean_token_accuracy": 0.33157467693090437,
681
+ "step": 1660
682
+ },
683
+ {
684
+ "epoch": 0.23466964659868697,
685
+ "grad_norm": 2.4436118602752686,
686
+ "learning_rate": 9.457741159842875e-05,
687
+ "loss": 2.7619,
688
+ "mean_token_accuracy": 0.32897727340459826,
689
+ "step": 1680
690
+ },
691
+ {
692
+ "epoch": 0.23746333286771895,
693
+ "grad_norm": 2.174079179763794,
694
+ "learning_rate": 9.435444983593133e-05,
695
+ "loss": 2.7419,
696
+ "mean_token_accuracy": 0.33214285373687746,
697
+ "step": 1700
698
+ },
699
+ {
700
+ "epoch": 0.24025701913675093,
701
+ "grad_norm": 2.1228203773498535,
702
+ "learning_rate": 9.412726996996242e-05,
703
+ "loss": 2.711,
704
+ "mean_token_accuracy": 0.3351461037993431,
705
+ "step": 1720
706
+ },
707
+ {
708
+ "epoch": 0.24305070540578294,
709
+ "grad_norm": 2.5232136249542236,
710
+ "learning_rate": 9.389589360530315e-05,
711
+ "loss": 2.7503,
712
+ "mean_token_accuracy": 0.33506493717432023,
713
+ "step": 1740
714
+ },
715
+ {
716
+ "epoch": 0.24584439167481492,
717
+ "grad_norm": 2.0878124237060547,
718
+ "learning_rate": 9.366034274582125e-05,
719
+ "loss": 2.7578,
720
+ "mean_token_accuracy": 0.33417208194732667,
721
+ "step": 1760
722
+ },
723
+ {
724
+ "epoch": 0.2486380779438469,
725
+ "grad_norm": 2.1424570083618164,
726
+ "learning_rate": 9.342063979237846e-05,
727
+ "loss": 2.7409,
728
+ "mean_token_accuracy": 0.3298701301217079,
729
+ "step": 1780
730
+ },
731
+ {
732
+ "epoch": 0.2500349210783629,
733
+ "eval_loss": 2.7205357551574707,
734
+ "eval_mean_token_accuracy": 0.33310290950003457,
735
+ "eval_runtime": 1163.4728,
736
+ "eval_samples_per_second": 84.514,
737
+ "eval_steps_per_second": 1.509,
738
+ "step": 1790
739
+ }
740
+ ],
741
+ "logging_steps": 20,
742
+ "max_steps": 7159,
743
+ "num_input_tokens_seen": 0,
744
+ "num_train_epochs": 1,
745
+ "save_steps": 1790,
746
+ "stateful_callbacks": {
747
+ "TrainerControl": {
748
+ "args": {
749
+ "should_epoch_stop": false,
750
+ "should_evaluate": false,
751
+ "should_log": false,
752
+ "should_save": true,
753
+ "should_training_stop": false
754
+ },
755
+ "attributes": {}
756
+ }
757
+ },
758
+ "total_flos": 4.1330824671186125e+17,
759
+ "train_batch_size": 8,
760
+ "trial_name": null,
761
+ "trial_params": null
762
+ }
checkpoint-1790/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd2cbbbb413ce8ac3f1ecead1ef5223b9ae35a2c6f2e492610ceba469f7ecdbe
3
+ size 5816
checkpoint-3580/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: google/paligemma2-3b-pt-224
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-3580/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "google/paligemma2-3b-pt-224",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "v_proj",
27
+ "down_proj",
28
+ "q_proj",
29
+ "gate_proj",
30
+ "o_proj",
31
+ "up_proj",
32
+ "k_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
checkpoint-3580/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b3a29027603ad585b95a3f8a197b7b66d595de8cd0f5d357d31901f9c0c4d41
3
+ size 95091000
checkpoint-3580/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f37dafec816206824c47f125476a81fce6c9271ec5a72a5065f49d77738ce23a
3
+ size 190464380
checkpoint-3580/preprocessor_config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": null,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.5,
8
+ 0.5,
9
+ 0.5
10
+ ],
11
+ "image_processor_type": "SiglipImageProcessor",
12
+ "image_seq_length": 256,
13
+ "image_std": [
14
+ 0.5,
15
+ 0.5,
16
+ 0.5
17
+ ],
18
+ "processor_class": "PaliGemmaProcessor",
19
+ "resample": 3,
20
+ "rescale_factor": 0.00392156862745098,
21
+ "size": {
22
+ "height": 224,
23
+ "width": 224
24
+ }
25
+ }
checkpoint-3580/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:341b2f879a2f45baaad9b019ab4cee6c751236047e5afe4403291b921e6a1d01
3
+ size 15728
checkpoint-3580/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83eceafa8e14e13c00cec9a96c6caa2e305cd7322cf1490f10c5c470813260be
3
+ size 15728
checkpoint-3580/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b19cead05066180d3d792b83244f3c0c1db41a4bd3e7cf2993d7d7901fb211d
3
+ size 15728
checkpoint-3580/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e3b7e83f44fdbff77d4863def778928315a42d8a08bb973e3571ae7b96454ca
3
+ size 15728
checkpoint-3580/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c993fdc2af2fcbb60015402d9ada66cdc1b69ff78d2300ce025a8a15f3391f5
3
+ size 15728
checkpoint-3580/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f95c781988c9fb9e5f9b7573fe82fd9c813ea2a4d0a7f392a6621a19359bc99d
3
+ size 15728
checkpoint-3580/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e86bbd85739f7ba5f42d7d97429ad58c362436991c3fcf336b2c15dcb94b389
3
+ size 15728
checkpoint-3580/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4b0e4446e2ae10656bc649b0419f603fb15db770205a2255690411e8189447c
3
+ size 1064
checkpoint-3580/special_tokens_map.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<image>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ }
10
+ ],
11
+ "bos_token": {
12
+ "content": "<bos>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "eos_token": {
19
+ "content": "<eos>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "pad_token": {
26
+ "content": "<pad>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ },
32
+ "unk_token": {
33
+ "content": "<unk>",
34
+ "lstrip": false,
35
+ "normalized": false,
36
+ "rstrip": false,
37
+ "single_word": false
38
+ }
39
+ }
checkpoint-3580/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b648d11e0879b11659e6b4051f691752c0cef597a865c6fde5b318b9f68c1d05
3
+ size 34600974
checkpoint-3580/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-3580/trainer_state.json ADDED
@@ -0,0 +1,1491 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 2.6793947219848633,
3
+ "best_model_checkpoint": "data/paligemma2-3b-pt-224-sft-lora-magicsoup_no_cfiphone_no_insta_sub5/checkpoint-3580",
4
+ "epoch": 0.5000698421567258,
5
+ "eval_steps": 1790,
6
+ "global_step": 3580,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0001396843134515994,
13
+ "grad_norm": 11.714253425598145,
14
+ "learning_rate": 1.3966480446927375e-07,
15
+ "loss": 15.8723,
16
+ "mean_token_accuracy": 0.051948051899671555,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.0027936862690319877,
21
+ "grad_norm": 11.453227996826172,
22
+ "learning_rate": 2.7932960893854746e-06,
23
+ "loss": 15.6868,
24
+ "mean_token_accuracy": 0.04536910433518259,
25
+ "step": 20
26
+ },
27
+ {
28
+ "epoch": 0.0055873725380639755,
29
+ "grad_norm": 14.288809776306152,
30
+ "learning_rate": 5.586592178770949e-06,
31
+ "loss": 15.2233,
32
+ "mean_token_accuracy": 0.04797077886760235,
33
+ "step": 40
34
+ },
35
+ {
36
+ "epoch": 0.008381058807095963,
37
+ "grad_norm": 15.974210739135742,
38
+ "learning_rate": 8.379888268156424e-06,
39
+ "loss": 12.5816,
40
+ "mean_token_accuracy": 0.06761363632977009,
41
+ "step": 60
42
+ },
43
+ {
44
+ "epoch": 0.011174745076127951,
45
+ "grad_norm": 8.255433082580566,
46
+ "learning_rate": 1.1173184357541899e-05,
47
+ "loss": 8.1704,
48
+ "mean_token_accuracy": 0.019724026112817226,
49
+ "step": 80
50
+ },
51
+ {
52
+ "epoch": 0.013968431345159939,
53
+ "grad_norm": 4.060810565948486,
54
+ "learning_rate": 1.3966480446927374e-05,
55
+ "loss": 5.8302,
56
+ "mean_token_accuracy": 0.0771915590390563,
57
+ "step": 100
58
+ },
59
+ {
60
+ "epoch": 0.016762117614191926,
61
+ "grad_norm": 5.3958940505981445,
62
+ "learning_rate": 1.675977653631285e-05,
63
+ "loss": 5.1183,
64
+ "mean_token_accuracy": 0.09870129823684692,
65
+ "step": 120
66
+ },
67
+ {
68
+ "epoch": 0.019555803883223914,
69
+ "grad_norm": 6.21713924407959,
70
+ "learning_rate": 1.9553072625698323e-05,
71
+ "loss": 4.6938,
72
+ "mean_token_accuracy": 0.11225649379193783,
73
+ "step": 140
74
+ },
75
+ {
76
+ "epoch": 0.022349490152255902,
77
+ "grad_norm": 10.742652893066406,
78
+ "learning_rate": 2.2346368715083797e-05,
79
+ "loss": 4.375,
80
+ "mean_token_accuracy": 0.12938311770558358,
81
+ "step": 160
82
+ },
83
+ {
84
+ "epoch": 0.02514317642128789,
85
+ "grad_norm": 14.718498229980469,
86
+ "learning_rate": 2.5139664804469275e-05,
87
+ "loss": 4.1989,
88
+ "mean_token_accuracy": 0.16461038812994958,
89
+ "step": 180
90
+ },
91
+ {
92
+ "epoch": 0.027936862690319877,
93
+ "grad_norm": 10.117100715637207,
94
+ "learning_rate": 2.793296089385475e-05,
95
+ "loss": 3.8056,
96
+ "mean_token_accuracy": 0.2379870109260082,
97
+ "step": 200
98
+ },
99
+ {
100
+ "epoch": 0.030730548959351865,
101
+ "grad_norm": 6.335511207580566,
102
+ "learning_rate": 3.0726256983240227e-05,
103
+ "loss": 3.5194,
104
+ "mean_token_accuracy": 0.2828733794391155,
105
+ "step": 220
106
+ },
107
+ {
108
+ "epoch": 0.03352423522838385,
109
+ "grad_norm": 8.714235305786133,
110
+ "learning_rate": 3.35195530726257e-05,
111
+ "loss": 3.4042,
112
+ "mean_token_accuracy": 0.2905844166874886,
113
+ "step": 240
114
+ },
115
+ {
116
+ "epoch": 0.03631792149741584,
117
+ "grad_norm": 28.925806045532227,
118
+ "learning_rate": 3.6312849162011175e-05,
119
+ "loss": 3.3014,
120
+ "mean_token_accuracy": 0.30211039036512377,
121
+ "step": 260
122
+ },
123
+ {
124
+ "epoch": 0.03911160776644783,
125
+ "grad_norm": 7.385269641876221,
126
+ "learning_rate": 3.9106145251396646e-05,
127
+ "loss": 3.2824,
128
+ "mean_token_accuracy": 0.2980519443750381,
129
+ "step": 280
130
+ },
131
+ {
132
+ "epoch": 0.041905294035479816,
133
+ "grad_norm": 26.001882553100586,
134
+ "learning_rate": 4.1899441340782123e-05,
135
+ "loss": 3.2237,
136
+ "mean_token_accuracy": 0.3021103873848915,
137
+ "step": 300
138
+ },
139
+ {
140
+ "epoch": 0.044698980304511804,
141
+ "grad_norm": 6.193004131317139,
142
+ "learning_rate": 4.4692737430167594e-05,
143
+ "loss": 3.1911,
144
+ "mean_token_accuracy": 0.3050324633717537,
145
+ "step": 320
146
+ },
147
+ {
148
+ "epoch": 0.04749266657354379,
149
+ "grad_norm": 10.755631446838379,
150
+ "learning_rate": 4.748603351955307e-05,
151
+ "loss": 3.1985,
152
+ "mean_token_accuracy": 0.30081168562173843,
153
+ "step": 340
154
+ },
155
+ {
156
+ "epoch": 0.05028635284257578,
157
+ "grad_norm": 13.610740661621094,
158
+ "learning_rate": 5.027932960893855e-05,
159
+ "loss": 3.1074,
160
+ "mean_token_accuracy": 0.31006493270397184,
161
+ "step": 360
162
+ },
163
+ {
164
+ "epoch": 0.05308003911160777,
165
+ "grad_norm": 7.772305011749268,
166
+ "learning_rate": 5.307262569832403e-05,
167
+ "loss": 3.0981,
168
+ "mean_token_accuracy": 0.3107142850756645,
169
+ "step": 380
170
+ },
171
+ {
172
+ "epoch": 0.055873725380639755,
173
+ "grad_norm": 8.072247505187988,
174
+ "learning_rate": 5.58659217877095e-05,
175
+ "loss": 3.0943,
176
+ "mean_token_accuracy": 0.31095779240131377,
177
+ "step": 400
178
+ },
179
+ {
180
+ "epoch": 0.05866741164967174,
181
+ "grad_norm": 7.870853900909424,
182
+ "learning_rate": 5.8659217877094976e-05,
183
+ "loss": 3.0422,
184
+ "mean_token_accuracy": 0.31168831288814547,
185
+ "step": 420
186
+ },
187
+ {
188
+ "epoch": 0.06146109791870373,
189
+ "grad_norm": 19.650827407836914,
190
+ "learning_rate": 6.145251396648045e-05,
191
+ "loss": 3.085,
192
+ "mean_token_accuracy": 0.31087662279605865,
193
+ "step": 440
194
+ },
195
+ {
196
+ "epoch": 0.06425478418773571,
197
+ "grad_norm": 17.583972930908203,
198
+ "learning_rate": 6.424581005586592e-05,
199
+ "loss": 3.0207,
200
+ "mean_token_accuracy": 0.3114448055624962,
201
+ "step": 460
202
+ },
203
+ {
204
+ "epoch": 0.0670484704567677,
205
+ "grad_norm": 8.581819534301758,
206
+ "learning_rate": 6.70391061452514e-05,
207
+ "loss": 3.0396,
208
+ "mean_token_accuracy": 0.31160714030265807,
209
+ "step": 480
210
+ },
211
+ {
212
+ "epoch": 0.06984215672579969,
213
+ "grad_norm": 10.295416831970215,
214
+ "learning_rate": 6.983240223463688e-05,
215
+ "loss": 3.0311,
216
+ "mean_token_accuracy": 0.3094155818223953,
217
+ "step": 500
218
+ },
219
+ {
220
+ "epoch": 0.07263584299483168,
221
+ "grad_norm": 11.54842472076416,
222
+ "learning_rate": 7.262569832402235e-05,
223
+ "loss": 2.9806,
224
+ "mean_token_accuracy": 0.3171266242861748,
225
+ "step": 520
226
+ },
227
+ {
228
+ "epoch": 0.07542952926386366,
229
+ "grad_norm": 6.4206743240356445,
230
+ "learning_rate": 7.541899441340783e-05,
231
+ "loss": 3.0046,
232
+ "mean_token_accuracy": 0.3163961052894592,
233
+ "step": 540
234
+ },
235
+ {
236
+ "epoch": 0.07822321553289566,
237
+ "grad_norm": 6.957503795623779,
238
+ "learning_rate": 7.821229050279329e-05,
239
+ "loss": 2.9919,
240
+ "mean_token_accuracy": 0.31185064762830733,
241
+ "step": 560
242
+ },
243
+ {
244
+ "epoch": 0.08101690180192764,
245
+ "grad_norm": 4.134042263031006,
246
+ "learning_rate": 8.100558659217878e-05,
247
+ "loss": 3.0287,
248
+ "mean_token_accuracy": 0.3153409093618393,
249
+ "step": 580
250
+ },
251
+ {
252
+ "epoch": 0.08381058807095963,
253
+ "grad_norm": 5.571300029754639,
254
+ "learning_rate": 8.379888268156425e-05,
255
+ "loss": 2.9836,
256
+ "mean_token_accuracy": 0.31599026173353195,
257
+ "step": 600
258
+ },
259
+ {
260
+ "epoch": 0.08660427433999161,
261
+ "grad_norm": 5.823517799377441,
262
+ "learning_rate": 8.659217877094973e-05,
263
+ "loss": 2.9693,
264
+ "mean_token_accuracy": 0.3173701331019402,
265
+ "step": 620
266
+ },
267
+ {
268
+ "epoch": 0.08939796060902361,
269
+ "grad_norm": 5.942770004272461,
270
+ "learning_rate": 8.938547486033519e-05,
271
+ "loss": 2.957,
272
+ "mean_token_accuracy": 0.32094155699014665,
273
+ "step": 640
274
+ },
275
+ {
276
+ "epoch": 0.09219164687805559,
277
+ "grad_norm": 5.494757175445557,
278
+ "learning_rate": 9.217877094972067e-05,
279
+ "loss": 2.9391,
280
+ "mean_token_accuracy": 0.3202922075986862,
281
+ "step": 660
282
+ },
283
+ {
284
+ "epoch": 0.09498533314708758,
285
+ "grad_norm": 3.7874789237976074,
286
+ "learning_rate": 9.497206703910614e-05,
287
+ "loss": 2.9662,
288
+ "mean_token_accuracy": 0.318506495654583,
289
+ "step": 680
290
+ },
291
+ {
292
+ "epoch": 0.09777901941611956,
293
+ "grad_norm": 4.3834733963012695,
294
+ "learning_rate": 9.776536312849163e-05,
295
+ "loss": 2.9742,
296
+ "mean_token_accuracy": 0.315259738266468,
297
+ "step": 700
298
+ },
299
+ {
300
+ "epoch": 0.10057270568515156,
301
+ "grad_norm": 3.8033530712127686,
302
+ "learning_rate": 9.999990489938263e-05,
303
+ "loss": 2.9255,
304
+ "mean_token_accuracy": 0.3217532455921173,
305
+ "step": 720
306
+ },
307
+ {
308
+ "epoch": 0.10336639195418354,
309
+ "grad_norm": 5.953765869140625,
310
+ "learning_rate": 9.99965764157593e-05,
311
+ "loss": 2.8773,
312
+ "mean_token_accuracy": 0.32402597516775133,
313
+ "step": 740
314
+ },
315
+ {
316
+ "epoch": 0.10616007822321553,
317
+ "grad_norm": 8.89194107055664,
318
+ "learning_rate": 9.998849326302563e-05,
319
+ "loss": 2.9062,
320
+ "mean_token_accuracy": 0.3172889605164528,
321
+ "step": 760
322
+ },
323
+ {
324
+ "epoch": 0.10895376449224752,
325
+ "grad_norm": 4.883932113647461,
326
+ "learning_rate": 9.997565620988856e-05,
327
+ "loss": 2.889,
328
+ "mean_token_accuracy": 0.324594159424305,
329
+ "step": 780
330
+ },
331
+ {
332
+ "epoch": 0.11174745076127951,
333
+ "grad_norm": 6.9450297355651855,
334
+ "learning_rate": 9.995806647715047e-05,
335
+ "loss": 2.902,
336
+ "mean_token_accuracy": 0.319155840575695,
337
+ "step": 800
338
+ },
339
+ {
340
+ "epoch": 0.11454113703031149,
341
+ "grad_norm": 3.826904296875,
342
+ "learning_rate": 9.99357257375931e-05,
343
+ "loss": 2.845,
344
+ "mean_token_accuracy": 0.32288961112499237,
345
+ "step": 820
346
+ },
347
+ {
348
+ "epoch": 0.11733482329934349,
349
+ "grad_norm": 3.4276959896087646,
350
+ "learning_rate": 9.99086361158184e-05,
351
+ "loss": 2.8776,
352
+ "mean_token_accuracy": 0.31899350732564924,
353
+ "step": 840
354
+ },
355
+ {
356
+ "epoch": 0.12012850956837547,
357
+ "grad_norm": 4.847935199737549,
358
+ "learning_rate": 9.987680018804652e-05,
359
+ "loss": 2.8714,
360
+ "mean_token_accuracy": 0.32126623690128325,
361
+ "step": 860
362
+ },
363
+ {
364
+ "epoch": 0.12292219583740746,
365
+ "grad_norm": 3.4353716373443604,
366
+ "learning_rate": 9.984022098187083e-05,
367
+ "loss": 2.8408,
368
+ "mean_token_accuracy": 0.3215097412467003,
369
+ "step": 880
370
+ },
371
+ {
372
+ "epoch": 0.12571588210643944,
373
+ "grad_norm": 4.255288600921631,
374
+ "learning_rate": 9.979890197596993e-05,
375
+ "loss": 2.887,
376
+ "mean_token_accuracy": 0.3237824708223343,
377
+ "step": 900
378
+ },
379
+ {
380
+ "epoch": 0.12850956837547142,
381
+ "grad_norm": 4.189087867736816,
382
+ "learning_rate": 9.97528470997769e-05,
383
+ "loss": 2.8593,
384
+ "mean_token_accuracy": 0.324756495654583,
385
+ "step": 920
386
+ },
387
+ {
388
+ "epoch": 0.13130325464450343,
389
+ "grad_norm": 2.641284227371216,
390
+ "learning_rate": 9.97020607331056e-05,
391
+ "loss": 2.8606,
392
+ "mean_token_accuracy": 0.32142857313156126,
393
+ "step": 940
394
+ },
395
+ {
396
+ "epoch": 0.1340969409135354,
397
+ "grad_norm": 2.688258171081543,
398
+ "learning_rate": 9.964654770573408e-05,
399
+ "loss": 2.8676,
400
+ "mean_token_accuracy": 0.32646103799343107,
401
+ "step": 960
402
+ },
403
+ {
404
+ "epoch": 0.1368906271825674,
405
+ "grad_norm": 3.801523208618164,
406
+ "learning_rate": 9.958631329694537e-05,
407
+ "loss": 2.8623,
408
+ "mean_token_accuracy": 0.3244318202137947,
409
+ "step": 980
410
+ },
411
+ {
412
+ "epoch": 0.13968431345159937,
413
+ "grad_norm": 3.528196334838867,
414
+ "learning_rate": 9.952136323502536e-05,
415
+ "loss": 2.865,
416
+ "mean_token_accuracy": 0.32459415644407275,
417
+ "step": 1000
418
+ },
419
+ {
420
+ "epoch": 0.14247799972063138,
421
+ "grad_norm": 3.970863103866577,
422
+ "learning_rate": 9.945170369671802e-05,
423
+ "loss": 2.8762,
424
+ "mean_token_accuracy": 0.32102272659540176,
425
+ "step": 1020
426
+ },
427
+ {
428
+ "epoch": 0.14527168598966336,
429
+ "grad_norm": 4.364096641540527,
430
+ "learning_rate": 9.937734130663807e-05,
431
+ "loss": 2.8521,
432
+ "mean_token_accuracy": 0.321185065805912,
433
+ "step": 1040
434
+ },
435
+ {
436
+ "epoch": 0.14806537225869534,
437
+ "grad_norm": 2.6619839668273926,
438
+ "learning_rate": 9.92982831366409e-05,
439
+ "loss": 2.8557,
440
+ "mean_token_accuracy": 0.32167208194732666,
441
+ "step": 1060
442
+ },
443
+ {
444
+ "epoch": 0.15085905852772732,
445
+ "grad_norm": 2.8934223651885986,
446
+ "learning_rate": 9.921453670515009e-05,
447
+ "loss": 2.8138,
448
+ "mean_token_accuracy": 0.3263798728585243,
449
+ "step": 1080
450
+ },
451
+ {
452
+ "epoch": 0.15365274479675933,
453
+ "grad_norm": 3.3745875358581543,
454
+ "learning_rate": 9.91261099764424e-05,
455
+ "loss": 2.8387,
456
+ "mean_token_accuracy": 0.3244318187236786,
457
+ "step": 1100
458
+ },
459
+ {
460
+ "epoch": 0.1564464310657913,
461
+ "grad_norm": 3.961806297302246,
462
+ "learning_rate": 9.903301135989032e-05,
463
+ "loss": 2.833,
464
+ "mean_token_accuracy": 0.324918831884861,
465
+ "step": 1120
466
+ },
467
+ {
468
+ "epoch": 0.1592401173348233,
469
+ "grad_norm": 2.1680517196655273,
470
+ "learning_rate": 9.893524970916242e-05,
471
+ "loss": 2.8295,
472
+ "mean_token_accuracy": 0.3221590921282768,
473
+ "step": 1140
474
+ },
475
+ {
476
+ "epoch": 0.16203380360385528,
477
+ "grad_norm": 2.9997398853302,
478
+ "learning_rate": 9.883283432138129e-05,
479
+ "loss": 2.8284,
480
+ "mean_token_accuracy": 0.32670454382896424,
481
+ "step": 1160
482
+ },
483
+ {
484
+ "epoch": 0.16482748987288728,
485
+ "grad_norm": 6.048096656799316,
486
+ "learning_rate": 9.872577493623945e-05,
487
+ "loss": 2.814,
488
+ "mean_token_accuracy": 0.3250811696052551,
489
+ "step": 1180
490
+ },
491
+ {
492
+ "epoch": 0.16762117614191926,
493
+ "grad_norm": 2.815396547317505,
494
+ "learning_rate": 9.861408173507304e-05,
495
+ "loss": 2.8529,
496
+ "mean_token_accuracy": 0.32467532753944395,
497
+ "step": 1200
498
+ },
499
+ {
500
+ "epoch": 0.17041486241095125,
501
+ "grad_norm": 4.112369537353516,
502
+ "learning_rate": 9.849776533989369e-05,
503
+ "loss": 2.7942,
504
+ "mean_token_accuracy": 0.327272729575634,
505
+ "step": 1220
506
+ },
507
+ {
508
+ "epoch": 0.17320854867998323,
509
+ "grad_norm": 2.6627895832061768,
510
+ "learning_rate": 9.837683681237819e-05,
511
+ "loss": 2.8087,
512
+ "mean_token_accuracy": 0.3275974065065384,
513
+ "step": 1240
514
+ },
515
+ {
516
+ "epoch": 0.17600223494901523,
517
+ "grad_norm": 3.526514768600464,
518
+ "learning_rate": 9.825130765281668e-05,
519
+ "loss": 2.8224,
520
+ "mean_token_accuracy": 0.32508117258548735,
521
+ "step": 1260
522
+ },
523
+ {
524
+ "epoch": 0.17879592121804722,
525
+ "grad_norm": 3.236506938934326,
526
+ "learning_rate": 9.812118979901891e-05,
527
+ "loss": 2.8373,
528
+ "mean_token_accuracy": 0.32394480556249616,
529
+ "step": 1280
530
+ },
531
+ {
532
+ "epoch": 0.1815896074870792,
533
+ "grad_norm": 3.168816566467285,
534
+ "learning_rate": 9.7986495625179e-05,
535
+ "loss": 2.8059,
536
+ "mean_token_accuracy": 0.3279220789670944,
537
+ "step": 1300
538
+ },
539
+ {
540
+ "epoch": 0.18438329375611118,
541
+ "grad_norm": 4.702609062194824,
542
+ "learning_rate": 9.784723794069852e-05,
543
+ "loss": 2.7648,
544
+ "mean_token_accuracy": 0.33125000149011613,
545
+ "step": 1320
546
+ },
547
+ {
548
+ "epoch": 0.18717698002514319,
549
+ "grad_norm": 3.00978684425354,
550
+ "learning_rate": 9.770342998896851e-05,
551
+ "loss": 2.8123,
552
+ "mean_token_accuracy": 0.32670454680919647,
553
+ "step": 1340
554
+ },
555
+ {
556
+ "epoch": 0.18997066629417517,
557
+ "grad_norm": 5.219450950622559,
558
+ "learning_rate": 9.755508544610994e-05,
559
+ "loss": 2.7966,
560
+ "mean_token_accuracy": 0.3340097412467003,
561
+ "step": 1360
562
+ },
563
+ {
564
+ "epoch": 0.19276435256320715,
565
+ "grad_norm": 2.8464038372039795,
566
+ "learning_rate": 9.740221841967307e-05,
567
+ "loss": 2.7738,
568
+ "mean_token_accuracy": 0.32849026173353196,
569
+ "step": 1380
570
+ },
571
+ {
572
+ "epoch": 0.19555803883223913,
573
+ "grad_norm": 3.846038341522217,
574
+ "learning_rate": 9.72448434472959e-05,
575
+ "loss": 2.7938,
576
+ "mean_token_accuracy": 0.3283279240131378,
577
+ "step": 1400
578
+ },
579
+ {
580
+ "epoch": 0.19835172510127114,
581
+ "grad_norm": 2.432882070541382,
582
+ "learning_rate": 9.708297549532157e-05,
583
+ "loss": 2.7805,
584
+ "mean_token_accuracy": 0.329788963496685,
585
+ "step": 1420
586
+ },
587
+ {
588
+ "epoch": 0.20114541137030312,
589
+ "grad_norm": 2.405036687850952,
590
+ "learning_rate": 9.691662995737516e-05,
591
+ "loss": 2.7497,
592
+ "mean_token_accuracy": 0.327353897690773,
593
+ "step": 1440
594
+ },
595
+ {
596
+ "epoch": 0.2039390976393351,
597
+ "grad_norm": 2.1323699951171875,
598
+ "learning_rate": 9.674582265289967e-05,
599
+ "loss": 2.7859,
600
+ "mean_token_accuracy": 0.3321428596973419,
601
+ "step": 1460
602
+ },
603
+ {
604
+ "epoch": 0.20673278390836708,
605
+ "grad_norm": 4.102099418640137,
606
+ "learning_rate": 9.657056982565161e-05,
607
+ "loss": 2.8042,
608
+ "mean_token_accuracy": 0.3272727280855179,
609
+ "step": 1480
610
+ },
611
+ {
612
+ "epoch": 0.2095264701773991,
613
+ "grad_norm": 3.1227469444274902,
614
+ "learning_rate": 9.639088814215627e-05,
615
+ "loss": 2.774,
616
+ "mean_token_accuracy": 0.32987013161182405,
617
+ "step": 1500
618
+ },
619
+ {
620
+ "epoch": 0.21232015644643107,
621
+ "grad_norm": 2.4661705493927,
622
+ "learning_rate": 9.620679469012266e-05,
623
+ "loss": 2.7377,
624
+ "mean_token_accuracy": 0.3315746784210205,
625
+ "step": 1520
626
+ },
627
+ {
628
+ "epoch": 0.21511384271546305,
629
+ "grad_norm": 3.3351097106933594,
630
+ "learning_rate": 9.601830697681853e-05,
631
+ "loss": 2.7786,
632
+ "mean_token_accuracy": 0.3308441549539566,
633
+ "step": 1540
634
+ },
635
+ {
636
+ "epoch": 0.21790752898449503,
637
+ "grad_norm": 2.9032342433929443,
638
+ "learning_rate": 9.582544292740542e-05,
639
+ "loss": 2.7485,
640
+ "mean_token_accuracy": 0.33076298981904984,
641
+ "step": 1560
642
+ },
643
+ {
644
+ "epoch": 0.22070121525352704,
645
+ "grad_norm": 2.4244565963745117,
646
+ "learning_rate": 9.562822088323396e-05,
647
+ "loss": 2.765,
648
+ "mean_token_accuracy": 0.3307629868388176,
649
+ "step": 1580
650
+ },
651
+ {
652
+ "epoch": 0.22349490152255902,
653
+ "grad_norm": 2.1915383338928223,
654
+ "learning_rate": 9.542665960009959e-05,
655
+ "loss": 2.7455,
656
+ "mean_token_accuracy": 0.33303571343421934,
657
+ "step": 1600
658
+ },
659
+ {
660
+ "epoch": 0.226288587791591,
661
+ "grad_norm": 4.944774150848389,
662
+ "learning_rate": 9.522077824645896e-05,
663
+ "loss": 2.7786,
664
+ "mean_token_accuracy": 0.3247564971446991,
665
+ "step": 1620
666
+ },
667
+ {
668
+ "epoch": 0.22908227406062298,
669
+ "grad_norm": 3.094341993331909,
670
+ "learning_rate": 9.501059640160696e-05,
671
+ "loss": 2.7678,
672
+ "mean_token_accuracy": 0.32930195033550264,
673
+ "step": 1640
674
+ },
675
+ {
676
+ "epoch": 0.231875960329655,
677
+ "grad_norm": 3.0549888610839844,
678
+ "learning_rate": 9.479613405381474e-05,
679
+ "loss": 2.7392,
680
+ "mean_token_accuracy": 0.33157467693090437,
681
+ "step": 1660
682
+ },
683
+ {
684
+ "epoch": 0.23466964659868697,
685
+ "grad_norm": 2.4436118602752686,
686
+ "learning_rate": 9.457741159842875e-05,
687
+ "loss": 2.7619,
688
+ "mean_token_accuracy": 0.32897727340459826,
689
+ "step": 1680
690
+ },
691
+ {
692
+ "epoch": 0.23746333286771895,
693
+ "grad_norm": 2.174079179763794,
694
+ "learning_rate": 9.435444983593133e-05,
695
+ "loss": 2.7419,
696
+ "mean_token_accuracy": 0.33214285373687746,
697
+ "step": 1700
698
+ },
699
+ {
700
+ "epoch": 0.24025701913675093,
701
+ "grad_norm": 2.1228203773498535,
702
+ "learning_rate": 9.412726996996242e-05,
703
+ "loss": 2.711,
704
+ "mean_token_accuracy": 0.3351461037993431,
705
+ "step": 1720
706
+ },
707
+ {
708
+ "epoch": 0.24305070540578294,
709
+ "grad_norm": 2.5232136249542236,
710
+ "learning_rate": 9.389589360530315e-05,
711
+ "loss": 2.7503,
712
+ "mean_token_accuracy": 0.33506493717432023,
713
+ "step": 1740
714
+ },
715
+ {
716
+ "epoch": 0.24584439167481492,
717
+ "grad_norm": 2.0878124237060547,
718
+ "learning_rate": 9.366034274582125e-05,
719
+ "loss": 2.7578,
720
+ "mean_token_accuracy": 0.33417208194732667,
721
+ "step": 1760
722
+ },
723
+ {
724
+ "epoch": 0.2486380779438469,
725
+ "grad_norm": 2.1424570083618164,
726
+ "learning_rate": 9.342063979237846e-05,
727
+ "loss": 2.7409,
728
+ "mean_token_accuracy": 0.3298701301217079,
729
+ "step": 1780
730
+ },
731
+ {
732
+ "epoch": 0.2500349210783629,
733
+ "eval_loss": 2.7205357551574707,
734
+ "eval_mean_token_accuracy": 0.33310290950003457,
735
+ "eval_runtime": 1163.4728,
736
+ "eval_samples_per_second": 84.514,
737
+ "eval_steps_per_second": 1.509,
738
+ "step": 1790
739
+ },
740
+ {
741
+ "epoch": 0.2514317642128789,
742
+ "grad_norm": 2.787091016769409,
743
+ "learning_rate": 9.317680754070017e-05,
744
+ "loss": 2.7103,
745
+ "mean_token_accuracy": 0.3347402632236481,
746
+ "step": 1800
747
+ },
748
+ {
749
+ "epoch": 0.25422545048191086,
750
+ "grad_norm": 2.668544292449951,
751
+ "learning_rate": 9.29288691792077e-05,
752
+ "loss": 2.7083,
753
+ "mean_token_accuracy": 0.3347402587532997,
754
+ "step": 1820
755
+ },
756
+ {
757
+ "epoch": 0.25701913675094284,
758
+ "grad_norm": 1.573211669921875,
759
+ "learning_rate": 9.267684828681286e-05,
760
+ "loss": 2.7137,
761
+ "mean_token_accuracy": 0.33206168860197066,
762
+ "step": 1840
763
+ },
764
+ {
765
+ "epoch": 0.2598128230199749,
766
+ "grad_norm": 2.3701252937316895,
767
+ "learning_rate": 9.242076883067579e-05,
768
+ "loss": 2.7062,
769
+ "mean_token_accuracy": 0.3372564911842346,
770
+ "step": 1860
771
+ },
772
+ {
773
+ "epoch": 0.26260650928900686,
774
+ "grad_norm": 2.19620418548584,
775
+ "learning_rate": 9.216065516392555e-05,
776
+ "loss": 2.7239,
777
+ "mean_token_accuracy": 0.33417207896709444,
778
+ "step": 1880
779
+ },
780
+ {
781
+ "epoch": 0.26540019555803884,
782
+ "grad_norm": 2.424910306930542,
783
+ "learning_rate": 9.18965320233443e-05,
784
+ "loss": 2.7034,
785
+ "mean_token_accuracy": 0.33741882890462876,
786
+ "step": 1900
787
+ },
788
+ {
789
+ "epoch": 0.2681938818270708,
790
+ "grad_norm": 1.7149094343185425,
791
+ "learning_rate": 9.162842452701463e-05,
792
+ "loss": 2.7212,
793
+ "mean_token_accuracy": 0.3329545482993126,
794
+ "step": 1920
795
+ },
796
+ {
797
+ "epoch": 0.2709875680961028,
798
+ "grad_norm": 2.663922071456909,
799
+ "learning_rate": 9.1356358171931e-05,
800
+ "loss": 2.7237,
801
+ "mean_token_accuracy": 0.33019480258226397,
802
+ "step": 1940
803
+ },
804
+ {
805
+ "epoch": 0.2737812543651348,
806
+ "grad_norm": 2.727353811264038,
807
+ "learning_rate": 9.10803588315749e-05,
808
+ "loss": 2.7267,
809
+ "mean_token_accuracy": 0.33165584653615954,
810
+ "step": 1960
811
+ },
812
+ {
813
+ "epoch": 0.27657494063416677,
814
+ "grad_norm": 2.4968833923339844,
815
+ "learning_rate": 9.080045275345429e-05,
816
+ "loss": 2.7363,
817
+ "mean_token_accuracy": 0.33368506729602815,
818
+ "step": 1980
819
+ },
820
+ {
821
+ "epoch": 0.27936862690319875,
822
+ "grad_norm": 2.447314977645874,
823
+ "learning_rate": 9.051666655660752e-05,
824
+ "loss": 2.691,
825
+ "mean_token_accuracy": 0.33392857313156127,
826
+ "step": 2000
827
+ },
828
+ {
829
+ "epoch": 0.2821623131722308,
830
+ "grad_norm": 3.4394643306732178,
831
+ "learning_rate": 9.022902722907173e-05,
832
+ "loss": 2.7273,
833
+ "mean_token_accuracy": 0.33084415793418886,
834
+ "step": 2020
835
+ },
836
+ {
837
+ "epoch": 0.28495599944126276,
838
+ "grad_norm": 1.788519024848938,
839
+ "learning_rate": 8.99375621253165e-05,
840
+ "loss": 2.7005,
841
+ "mean_token_accuracy": 0.3343344137072563,
842
+ "step": 2040
843
+ },
844
+ {
845
+ "epoch": 0.28774968571029474,
846
+ "grad_norm": 2.173936367034912,
847
+ "learning_rate": 8.964229896364223e-05,
848
+ "loss": 2.6749,
849
+ "mean_token_accuracy": 0.33271104097366333,
850
+ "step": 2060
851
+ },
852
+ {
853
+ "epoch": 0.2905433719793267,
854
+ "grad_norm": 2.7031307220458984,
855
+ "learning_rate": 8.934326582354426e-05,
856
+ "loss": 2.7266,
857
+ "mean_token_accuracy": 0.3330357104539871,
858
+ "step": 2080
859
+ },
860
+ {
861
+ "epoch": 0.2933370582483587,
862
+ "grad_norm": 1.726846694946289,
863
+ "learning_rate": 8.904049114304247e-05,
864
+ "loss": 2.7049,
865
+ "mean_token_accuracy": 0.33628246933221817,
866
+ "step": 2100
867
+ },
868
+ {
869
+ "epoch": 0.2961307445173907,
870
+ "grad_norm": 2.3227744102478027,
871
+ "learning_rate": 8.873400371597685e-05,
872
+ "loss": 2.7019,
873
+ "mean_token_accuracy": 0.3343344181776047,
874
+ "step": 2120
875
+ },
876
+ {
877
+ "epoch": 0.29892443078642267,
878
+ "grad_norm": 2.884831190109253,
879
+ "learning_rate": 8.842383268926917e-05,
880
+ "loss": 2.7492,
881
+ "mean_token_accuracy": 0.3277597427368164,
882
+ "step": 2140
883
+ },
884
+ {
885
+ "epoch": 0.30171811705545465,
886
+ "grad_norm": 2.0531013011932373,
887
+ "learning_rate": 8.811000756015115e-05,
888
+ "loss": 2.7191,
889
+ "mean_token_accuracy": 0.3326298698782921,
890
+ "step": 2160
891
+ },
892
+ {
893
+ "epoch": 0.3045118033244867,
894
+ "grad_norm": 2.0113601684570312,
895
+ "learning_rate": 8.779255817335927e-05,
896
+ "loss": 2.6986,
897
+ "mean_token_accuracy": 0.3370129883289337,
898
+ "step": 2180
899
+ },
900
+ {
901
+ "epoch": 0.30730548959351867,
902
+ "grad_norm": 2.0892691612243652,
903
+ "learning_rate": 8.74715147182965e-05,
904
+ "loss": 2.7063,
905
+ "mean_token_accuracy": 0.3331980526447296,
906
+ "step": 2200
907
+ },
908
+ {
909
+ "epoch": 0.31009917586255065,
910
+ "grad_norm": 1.9228285551071167,
911
+ "learning_rate": 8.714690772616134e-05,
912
+ "loss": 2.6696,
913
+ "mean_token_accuracy": 0.3384740263223648,
914
+ "step": 2220
915
+ },
916
+ {
917
+ "epoch": 0.3128928621315826,
918
+ "grad_norm": 2.699789524078369,
919
+ "learning_rate": 8.681876806704431e-05,
920
+ "loss": 2.6917,
921
+ "mean_token_accuracy": 0.33693181574344633,
922
+ "step": 2240
923
+ },
924
+ {
925
+ "epoch": 0.3156865484006146,
926
+ "grad_norm": 2.43989896774292,
927
+ "learning_rate": 8.648712694699214e-05,
928
+ "loss": 2.6816,
929
+ "mean_token_accuracy": 0.3405032455921173,
930
+ "step": 2260
931
+ },
932
+ {
933
+ "epoch": 0.3184802346696466,
934
+ "grad_norm": 1.8896594047546387,
935
+ "learning_rate": 8.615201590504017e-05,
936
+ "loss": 2.6781,
937
+ "mean_token_accuracy": 0.33904220908880234,
938
+ "step": 2280
939
+ },
940
+ {
941
+ "epoch": 0.32127392093867857,
942
+ "grad_norm": 2.3167271614074707,
943
+ "learning_rate": 8.58134668102129e-05,
944
+ "loss": 2.6755,
945
+ "mean_token_accuracy": 0.33563312143087387,
946
+ "step": 2300
947
+ },
948
+ {
949
+ "epoch": 0.32406760720771055,
950
+ "grad_norm": 2.3568389415740967,
951
+ "learning_rate": 8.547151185849332e-05,
952
+ "loss": 2.6837,
953
+ "mean_token_accuracy": 0.3358766257762909,
954
+ "step": 2320
955
+ },
956
+ {
957
+ "epoch": 0.3268612934767426,
958
+ "grad_norm": 2.21427845954895,
959
+ "learning_rate": 8.512618356976103e-05,
960
+ "loss": 2.6701,
961
+ "mean_token_accuracy": 0.3395292177796364,
962
+ "step": 2340
963
+ },
964
+ {
965
+ "epoch": 0.32965497974577457,
966
+ "grad_norm": 2.3978805541992188,
967
+ "learning_rate": 8.477751478469964e-05,
968
+ "loss": 2.7054,
969
+ "mean_token_accuracy": 0.3341720774769783,
970
+ "step": 2360
971
+ },
972
+ {
973
+ "epoch": 0.33244866601480655,
974
+ "grad_norm": 2.3003275394439697,
975
+ "learning_rate": 8.442553866167362e-05,
976
+ "loss": 2.6831,
977
+ "mean_token_accuracy": 0.3353896141052246,
978
+ "step": 2380
979
+ },
980
+ {
981
+ "epoch": 0.33524235228383853,
982
+ "grad_norm": 2.208958625793457,
983
+ "learning_rate": 8.40702886735749e-05,
984
+ "loss": 2.7123,
985
+ "mean_token_accuracy": 0.33327922224998474,
986
+ "step": 2400
987
+ },
988
+ {
989
+ "epoch": 0.3380360385528705,
990
+ "grad_norm": 2.9336678981781006,
991
+ "learning_rate": 8.371179860463962e-05,
992
+ "loss": 2.6517,
993
+ "mean_token_accuracy": 0.33806818127632143,
994
+ "step": 2420
995
+ },
996
+ {
997
+ "epoch": 0.3408297248219025,
998
+ "grad_norm": 2.476029634475708,
999
+ "learning_rate": 8.335010254723532e-05,
1000
+ "loss": 2.6725,
1001
+ "mean_token_accuracy": 0.3363636344671249,
1002
+ "step": 2440
1003
+ },
1004
+ {
1005
+ "epoch": 0.34362341109093447,
1006
+ "grad_norm": 2.220250129699707,
1007
+ "learning_rate": 8.298523489861864e-05,
1008
+ "loss": 2.6884,
1009
+ "mean_token_accuracy": 0.3369318187236786,
1010
+ "step": 2460
1011
+ },
1012
+ {
1013
+ "epoch": 0.34641709735996645,
1014
+ "grad_norm": 2.475471258163452,
1015
+ "learning_rate": 8.261723035766424e-05,
1016
+ "loss": 2.6657,
1017
+ "mean_token_accuracy": 0.3395292192697525,
1018
+ "step": 2480
1019
+ },
1020
+ {
1021
+ "epoch": 0.3492107836289985,
1022
+ "grad_norm": 2.1862926483154297,
1023
+ "learning_rate": 8.224612392156492e-05,
1024
+ "loss": 2.6489,
1025
+ "mean_token_accuracy": 0.33928571343421937,
1026
+ "step": 2500
1027
+ },
1028
+ {
1029
+ "epoch": 0.35200446989803047,
1030
+ "grad_norm": 3.5017824172973633,
1031
+ "learning_rate": 8.187195088250334e-05,
1032
+ "loss": 2.6563,
1033
+ "mean_token_accuracy": 0.3419642835855484,
1034
+ "step": 2520
1035
+ },
1036
+ {
1037
+ "epoch": 0.35479815616706245,
1038
+ "grad_norm": 2.0507349967956543,
1039
+ "learning_rate": 8.149474682429581e-05,
1040
+ "loss": 2.6305,
1041
+ "mean_token_accuracy": 0.3375,
1042
+ "step": 2540
1043
+ },
1044
+ {
1045
+ "epoch": 0.35759184243609443,
1046
+ "grad_norm": 2.558877468109131,
1047
+ "learning_rate": 8.111454761900823e-05,
1048
+ "loss": 2.6551,
1049
+ "mean_token_accuracy": 0.3370129868388176,
1050
+ "step": 2560
1051
+ },
1052
+ {
1053
+ "epoch": 0.3603855287051264,
1054
+ "grad_norm": 2.8872764110565186,
1055
+ "learning_rate": 8.073138942354468e-05,
1056
+ "loss": 2.6755,
1057
+ "mean_token_accuracy": 0.3384740278124809,
1058
+ "step": 2580
1059
+ },
1060
+ {
1061
+ "epoch": 0.3631792149741584,
1062
+ "grad_norm": 2.2422327995300293,
1063
+ "learning_rate": 8.034530867620884e-05,
1064
+ "loss": 2.6338,
1065
+ "mean_token_accuracy": 0.34042208045721056,
1066
+ "step": 2600
1067
+ },
1068
+ {
1069
+ "epoch": 0.3659729012431904,
1070
+ "grad_norm": 3.2413196563720703,
1071
+ "learning_rate": 7.995634209323886e-05,
1072
+ "loss": 2.659,
1073
+ "mean_token_accuracy": 0.33839286118745804,
1074
+ "step": 2620
1075
+ },
1076
+ {
1077
+ "epoch": 0.36876658751222235,
1078
+ "grad_norm": 1.9311487674713135,
1079
+ "learning_rate": 7.956452666531543e-05,
1080
+ "loss": 2.6735,
1081
+ "mean_token_accuracy": 0.3370129868388176,
1082
+ "step": 2640
1083
+ },
1084
+ {
1085
+ "epoch": 0.3715602737812544,
1086
+ "grad_norm": 2.613398313522339,
1087
+ "learning_rate": 7.91698996540442e-05,
1088
+ "loss": 2.6615,
1089
+ "mean_token_accuracy": 0.3362824648618698,
1090
+ "step": 2660
1091
+ },
1092
+ {
1093
+ "epoch": 0.37435396005028637,
1094
+ "grad_norm": 2.089853048324585,
1095
+ "learning_rate": 7.877249858841205e-05,
1096
+ "loss": 2.6745,
1097
+ "mean_token_accuracy": 0.3379058450460434,
1098
+ "step": 2680
1099
+ },
1100
+ {
1101
+ "epoch": 0.37714764631931835,
1102
+ "grad_norm": 2.8007054328918457,
1103
+ "learning_rate": 7.837236126121813e-05,
1104
+ "loss": 2.6291,
1105
+ "mean_token_accuracy": 0.3419642895460129,
1106
+ "step": 2700
1107
+ },
1108
+ {
1109
+ "epoch": 0.37994133258835033,
1110
+ "grad_norm": 2.5469701290130615,
1111
+ "learning_rate": 7.796952572547979e-05,
1112
+ "loss": 2.6565,
1113
+ "mean_token_accuracy": 0.33522727340459824,
1114
+ "step": 2720
1115
+ },
1116
+ {
1117
+ "epoch": 0.3827350188573823,
1118
+ "grad_norm": 2.698303461074829,
1119
+ "learning_rate": 7.756403029081371e-05,
1120
+ "loss": 2.6347,
1121
+ "mean_token_accuracy": 0.34009740352630613,
1122
+ "step": 2740
1123
+ },
1124
+ {
1125
+ "epoch": 0.3855287051264143,
1126
+ "grad_norm": 2.7376692295074463,
1127
+ "learning_rate": 7.71559135197927e-05,
1128
+ "loss": 2.6732,
1129
+ "mean_token_accuracy": 0.33725649267435076,
1130
+ "step": 2760
1131
+ },
1132
+ {
1133
+ "epoch": 0.3883223913954463,
1134
+ "grad_norm": 2.4188475608825684,
1135
+ "learning_rate": 7.674521422427837e-05,
1136
+ "loss": 2.6648,
1137
+ "mean_token_accuracy": 0.33855519592761996,
1138
+ "step": 2780
1139
+ },
1140
+ {
1141
+ "epoch": 0.39111607766447826,
1142
+ "grad_norm": 2.3172502517700195,
1143
+ "learning_rate": 7.633197146173011e-05,
1144
+ "loss": 2.6581,
1145
+ "mean_token_accuracy": 0.33376623392105104,
1146
+ "step": 2800
1147
+ },
1148
+ {
1149
+ "epoch": 0.3939097639335103,
1150
+ "grad_norm": 2.007584810256958,
1151
+ "learning_rate": 7.591622453149078e-05,
1152
+ "loss": 2.6422,
1153
+ "mean_token_accuracy": 0.3401785731315613,
1154
+ "step": 2820
1155
+ },
1156
+ {
1157
+ "epoch": 0.3967034502025423,
1158
+ "grad_norm": 2.598574161529541,
1159
+ "learning_rate": 7.549801297104935e-05,
1160
+ "loss": 2.6408,
1161
+ "mean_token_accuracy": 0.33725649267435076,
1162
+ "step": 2840
1163
+ },
1164
+ {
1165
+ "epoch": 0.39949713647157425,
1166
+ "grad_norm": 2.0446927547454834,
1167
+ "learning_rate": 7.50773765522808e-05,
1168
+ "loss": 2.6269,
1169
+ "mean_token_accuracy": 0.3426136389374733,
1170
+ "step": 2860
1171
+ },
1172
+ {
1173
+ "epoch": 0.40229082274060624,
1174
+ "grad_norm": 2.690002918243408,
1175
+ "learning_rate": 7.465435527766389e-05,
1176
+ "loss": 2.5858,
1177
+ "mean_token_accuracy": 0.34058441370725634,
1178
+ "step": 2880
1179
+ },
1180
+ {
1181
+ "epoch": 0.4050845090096382,
1182
+ "grad_norm": 2.8425843715667725,
1183
+ "learning_rate": 7.422898937647695e-05,
1184
+ "loss": 2.5586,
1185
+ "mean_token_accuracy": 0.3442370146512985,
1186
+ "step": 2900
1187
+ },
1188
+ {
1189
+ "epoch": 0.4078781952786702,
1190
+ "grad_norm": 2.089576482772827,
1191
+ "learning_rate": 7.380131930097206e-05,
1192
+ "loss": 2.6763,
1193
+ "mean_token_accuracy": 0.333441561460495,
1194
+ "step": 2920
1195
+ },
1196
+ {
1197
+ "epoch": 0.4106718815477022,
1198
+ "grad_norm": 2.146989107131958,
1199
+ "learning_rate": 7.337138572252797e-05,
1200
+ "loss": 2.5974,
1201
+ "mean_token_accuracy": 0.3448863625526428,
1202
+ "step": 2940
1203
+ },
1204
+ {
1205
+ "epoch": 0.41346556781673416,
1206
+ "grad_norm": 1.8725186586380005,
1207
+ "learning_rate": 7.293922952778239e-05,
1208
+ "loss": 2.6124,
1209
+ "mean_token_accuracy": 0.3443993508815765,
1210
+ "step": 2960
1211
+ },
1212
+ {
1213
+ "epoch": 0.4162592540857662,
1214
+ "grad_norm": 2.520397186279297,
1215
+ "learning_rate": 7.250489181474351e-05,
1216
+ "loss": 2.6684,
1217
+ "mean_token_accuracy": 0.3356331169605255,
1218
+ "step": 2980
1219
+ },
1220
+ {
1221
+ "epoch": 0.4190529403547982,
1222
+ "grad_norm": 2.551262378692627,
1223
+ "learning_rate": 7.206841388888183e-05,
1224
+ "loss": 2.6146,
1225
+ "mean_token_accuracy": 0.3406655803322792,
1226
+ "step": 3000
1227
+ },
1228
+ {
1229
+ "epoch": 0.42184662662383016,
1230
+ "grad_norm": 2.6218693256378174,
1231
+ "learning_rate": 7.16298372592017e-05,
1232
+ "loss": 2.6026,
1233
+ "mean_token_accuracy": 0.3432629868388176,
1234
+ "step": 3020
1235
+ },
1236
+ {
1237
+ "epoch": 0.42464031289286214,
1238
+ "grad_norm": 1.9419686794281006,
1239
+ "learning_rate": 7.118920363429405e-05,
1240
+ "loss": 2.6163,
1241
+ "mean_token_accuracy": 0.34115259498357775,
1242
+ "step": 3040
1243
+ },
1244
+ {
1245
+ "epoch": 0.4274339991618941,
1246
+ "grad_norm": 2.822739601135254,
1247
+ "learning_rate": 7.074655491836988e-05,
1248
+ "loss": 2.6081,
1249
+ "mean_token_accuracy": 0.34123376458883287,
1250
+ "step": 3060
1251
+ },
1252
+ {
1253
+ "epoch": 0.4302276854309261,
1254
+ "grad_norm": 2.17193341255188,
1255
+ "learning_rate": 7.030193320727508e-05,
1256
+ "loss": 2.5796,
1257
+ "mean_token_accuracy": 0.3430194780230522,
1258
+ "step": 3080
1259
+ },
1260
+ {
1261
+ "epoch": 0.4330213716999581,
1262
+ "grad_norm": 2.2731964588165283,
1263
+ "learning_rate": 6.985538078448714e-05,
1264
+ "loss": 2.6235,
1265
+ "mean_token_accuracy": 0.3362012967467308,
1266
+ "step": 3100
1267
+ },
1268
+ {
1269
+ "epoch": 0.43581505796899006,
1270
+ "grad_norm": 2.6764817237854004,
1271
+ "learning_rate": 6.940694011709411e-05,
1272
+ "loss": 2.626,
1273
+ "mean_token_accuracy": 0.3414772734045982,
1274
+ "step": 3120
1275
+ },
1276
+ {
1277
+ "epoch": 0.4386087442380221,
1278
+ "grad_norm": 2.273409366607666,
1279
+ "learning_rate": 6.895665385175587e-05,
1280
+ "loss": 2.571,
1281
+ "mean_token_accuracy": 0.3428571432828903,
1282
+ "step": 3140
1283
+ },
1284
+ {
1285
+ "epoch": 0.4414024305070541,
1286
+ "grad_norm": 2.117824077606201,
1287
+ "learning_rate": 6.850456481064841e-05,
1288
+ "loss": 2.6061,
1289
+ "mean_token_accuracy": 0.34269480109214784,
1290
+ "step": 3160
1291
+ },
1292
+ {
1293
+ "epoch": 0.44419611677608606,
1294
+ "grad_norm": 2.7593703269958496,
1295
+ "learning_rate": 6.80507159873916e-05,
1296
+ "loss": 2.5878,
1297
+ "mean_token_accuracy": 0.34480519592761993,
1298
+ "step": 3180
1299
+ },
1300
+ {
1301
+ "epoch": 0.44698980304511804,
1302
+ "grad_norm": 2.5217463970184326,
1303
+ "learning_rate": 6.759515054296033e-05,
1304
+ "loss": 2.5867,
1305
+ "mean_token_accuracy": 0.3475649327039719,
1306
+ "step": 3200
1307
+ },
1308
+ {
1309
+ "epoch": 0.44978348931415,
1310
+ "grad_norm": 2.5164499282836914,
1311
+ "learning_rate": 6.713791180158004e-05,
1312
+ "loss": 2.6199,
1313
+ "mean_token_accuracy": 0.3417207792401314,
1314
+ "step": 3220
1315
+ },
1316
+ {
1317
+ "epoch": 0.452577175583182,
1318
+ "grad_norm": 4.4600701332092285,
1319
+ "learning_rate": 6.667904324660648e-05,
1320
+ "loss": 2.5562,
1321
+ "mean_token_accuracy": 0.3468344137072563,
1322
+ "step": 3240
1323
+ },
1324
+ {
1325
+ "epoch": 0.455370861852214,
1326
+ "grad_norm": 2.2503256797790527,
1327
+ "learning_rate": 6.621858851639052e-05,
1328
+ "loss": 2.598,
1329
+ "mean_token_accuracy": 0.33928571343421937,
1330
+ "step": 3260
1331
+ },
1332
+ {
1333
+ "epoch": 0.45816454812124596,
1334
+ "grad_norm": 2.7074501514434814,
1335
+ "learning_rate": 6.575659140012813e-05,
1336
+ "loss": 2.5749,
1337
+ "mean_token_accuracy": 0.34350649267435074,
1338
+ "step": 3280
1339
+ },
1340
+ {
1341
+ "epoch": 0.460958234390278,
1342
+ "grad_norm": 2.3996992111206055,
1343
+ "learning_rate": 6.529309583369605e-05,
1344
+ "loss": 2.5655,
1345
+ "mean_token_accuracy": 0.3461850643157959,
1346
+ "step": 3300
1347
+ },
1348
+ {
1349
+ "epoch": 0.46375192065931,
1350
+ "grad_norm": 2.124371290206909,
1351
+ "learning_rate": 6.482814589547343e-05,
1352
+ "loss": 2.5734,
1353
+ "mean_token_accuracy": 0.3435064911842346,
1354
+ "step": 3320
1355
+ },
1356
+ {
1357
+ "epoch": 0.46654560692834196,
1358
+ "grad_norm": 2.760023832321167,
1359
+ "learning_rate": 6.436178580215006e-05,
1360
+ "loss": 2.5831,
1361
+ "mean_token_accuracy": 0.34821428507566454,
1362
+ "step": 3340
1363
+ },
1364
+ {
1365
+ "epoch": 0.46933929319737394,
1366
+ "grad_norm": 2.2467293739318848,
1367
+ "learning_rate": 6.389405990452131e-05,
1368
+ "loss": 2.5386,
1369
+ "mean_token_accuracy": 0.34837662279605863,
1370
+ "step": 3360
1371
+ },
1372
+ {
1373
+ "epoch": 0.4721329794664059,
1374
+ "grad_norm": 2.895301342010498,
1375
+ "learning_rate": 6.342501268327036e-05,
1376
+ "loss": 2.608,
1377
+ "mean_token_accuracy": 0.34366882890462874,
1378
+ "step": 3380
1379
+ },
1380
+ {
1381
+ "epoch": 0.4749266657354379,
1382
+ "grad_norm": 2.8437559604644775,
1383
+ "learning_rate": 6.295468874473824e-05,
1384
+ "loss": 2.5744,
1385
+ "mean_token_accuracy": 0.34375,
1386
+ "step": 3400
1387
+ },
1388
+ {
1389
+ "epoch": 0.4777203520044699,
1390
+ "grad_norm": 2.2013747692108154,
1391
+ "learning_rate": 6.248313281668151e-05,
1392
+ "loss": 2.5572,
1393
+ "mean_token_accuracy": 0.34269480407238007,
1394
+ "step": 3420
1395
+ },
1396
+ {
1397
+ "epoch": 0.48051403827350186,
1398
+ "grad_norm": 2.285017728805542,
1399
+ "learning_rate": 6.201038974401893e-05,
1400
+ "loss": 2.5755,
1401
+ "mean_token_accuracy": 0.3433441549539566,
1402
+ "step": 3440
1403
+ },
1404
+ {
1405
+ "epoch": 0.4833077245425339,
1406
+ "grad_norm": 3.0466742515563965,
1407
+ "learning_rate": 6.15365044845665e-05,
1408
+ "loss": 2.5605,
1409
+ "mean_token_accuracy": 0.34318181723356245,
1410
+ "step": 3460
1411
+ },
1412
+ {
1413
+ "epoch": 0.4861014108115659,
1414
+ "grad_norm": 2.7282652854919434,
1415
+ "learning_rate": 6.10615221047621e-05,
1416
+ "loss": 2.5826,
1417
+ "mean_token_accuracy": 0.34439935386180875,
1418
+ "step": 3480
1419
+ },
1420
+ {
1421
+ "epoch": 0.48889509708059786,
1422
+ "grad_norm": 2.5899875164031982,
1423
+ "learning_rate": 6.0585487775379634e-05,
1424
+ "loss": 2.569,
1425
+ "mean_token_accuracy": 0.3461850628256798,
1426
+ "step": 3500
1427
+ },
1428
+ {
1429
+ "epoch": 0.49168878334962984,
1430
+ "grad_norm": 2.2856500148773193,
1431
+ "learning_rate": 6.0108446767233304e-05,
1432
+ "loss": 2.5432,
1433
+ "mean_token_accuracy": 0.3460227265954018,
1434
+ "step": 3520
1435
+ },
1436
+ {
1437
+ "epoch": 0.4944824696186618,
1438
+ "grad_norm": 2.4979193210601807,
1439
+ "learning_rate": 5.963044444687235e-05,
1440
+ "loss": 2.5524,
1441
+ "mean_token_accuracy": 0.3460227265954018,
1442
+ "step": 3540
1443
+ },
1444
+ {
1445
+ "epoch": 0.4972761558876938,
1446
+ "grad_norm": 3.4747583866119385,
1447
+ "learning_rate": 5.91515262722667e-05,
1448
+ "loss": 2.5506,
1449
+ "mean_token_accuracy": 0.34025973826646805,
1450
+ "step": 3560
1451
+ },
1452
+ {
1453
+ "epoch": 0.5000698421567258,
1454
+ "grad_norm": 2.0753846168518066,
1455
+ "learning_rate": 5.867173778848394e-05,
1456
+ "loss": 2.5333,
1457
+ "mean_token_accuracy": 0.34845779091119766,
1458
+ "step": 3580
1459
+ },
1460
+ {
1461
+ "epoch": 0.5000698421567258,
1462
+ "eval_loss": 2.6793947219848633,
1463
+ "eval_mean_token_accuracy": 0.3425768423901875,
1464
+ "eval_runtime": 994.8268,
1465
+ "eval_samples_per_second": 98.841,
1466
+ "eval_steps_per_second": 1.765,
1467
+ "step": 3580
1468
+ }
1469
+ ],
1470
+ "logging_steps": 20,
1471
+ "max_steps": 7159,
1472
+ "num_input_tokens_seen": 0,
1473
+ "num_train_epochs": 1,
1474
+ "save_steps": 1790,
1475
+ "stateful_callbacks": {
1476
+ "TrainerControl": {
1477
+ "args": {
1478
+ "should_epoch_stop": false,
1479
+ "should_evaluate": false,
1480
+ "should_log": false,
1481
+ "should_save": true,
1482
+ "should_training_stop": false
1483
+ },
1484
+ "attributes": {}
1485
+ }
1486
+ },
1487
+ "total_flos": 8.266164934908314e+17,
1488
+ "train_batch_size": 8,
1489
+ "trial_name": null,
1490
+ "trial_params": null
1491
+ }
checkpoint-3580/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd2cbbbb413ce8ac3f1ecead1ef5223b9ae35a2c6f2e492610ceba469f7ecdbe
3
+ size 5816
checkpoint-5370/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: google/paligemma2-3b-pt-224
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-5370/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "google/paligemma2-3b-pt-224",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "v_proj",
27
+ "down_proj",
28
+ "q_proj",
29
+ "gate_proj",
30
+ "o_proj",
31
+ "up_proj",
32
+ "k_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
checkpoint-5370/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d798ce6571f7b0c19ddb55a83a989747fa2f40949f8dbed6f5a547ef0669247d
3
+ size 95091000
checkpoint-5370/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9870c4082622bde1f06934c442db56f0ae7e8e0d57014a7778483b9a12fca9e
3
+ size 190464380
checkpoint-5370/preprocessor_config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": null,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.5,
8
+ 0.5,
9
+ 0.5
10
+ ],
11
+ "image_processor_type": "SiglipImageProcessor",
12
+ "image_seq_length": 256,
13
+ "image_std": [
14
+ 0.5,
15
+ 0.5,
16
+ 0.5
17
+ ],
18
+ "processor_class": "PaliGemmaProcessor",
19
+ "resample": 3,
20
+ "rescale_factor": 0.00392156862745098,
21
+ "size": {
22
+ "height": 224,
23
+ "width": 224
24
+ }
25
+ }
checkpoint-5370/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1ac5927070d2f6fc941cfdfc5bfb308b70eceffd262ac4387013ba6e6f3665f
3
+ size 15728
checkpoint-5370/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9c1fde9158c8eb58f29f4036080488c5a48dbcd0978143290cd98b719b7a529
3
+ size 15728
checkpoint-5370/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43d8afb38091243823a20c80136d3dbf9ae4e3c791def1e4db353e66a1ffc5ab
3
+ size 15728
checkpoint-5370/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:254ab890e75ce43e995c3332309cffef70be67811762cb5c77568db437e5abb3
3
+ size 15728