Init Program
Browse files- .gitignore +1 -0
- README.md +38 -3
- model.safetensors +3 -0
- model_cognilite.py +420 -0
- model_lora.py +49 -0
- tokenizer/special_tokens_map.json +30 -0
- tokenizer/tokenizer.json +0 -0
- tokenizer/tokenizer_config.json +44 -0
- train_lora.py +222 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__/
|
README.md
CHANGED
@@ -1,3 +1,38 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 介绍
|
2 |
+
使用了MiniMind2的模型参数,
|
3 |
+
- Github项目链接在:<a href="https://github.com/jingyaogong/minimind">Github Link</a>
|
4 |
+
- HuggingFace链接在 <a href="https://huggingface.co/jingyaogong/MiniMind2">Hugging Face</a>
|
5 |
+
# 快速开始
|
6 |
+
安装依赖:
|
7 |
+
```bash
|
8 |
+
pip install torch, transformer
|
9 |
+
```
|
10 |
+
|
11 |
+
运行模型:
|
12 |
+
```bash
|
13 |
+
python model_congnilite.py
|
14 |
+
```
|
15 |
+
|
16 |
+
|
17 |
+
# 常见问题介绍
|
18 |
+
在流式输出中,每输出一个token_id,就将它解码为字符并输出,会造成中文乱码现象,但是将token_id放到一个列表中一起解码就不会出现乱码
|
19 |
+
|
20 |
+
专业描述:**token边界不对齐导致的解码错误**
|
21 |
+
|
22 |
+
- tokenizer采用的是子词(subword)分词(如BPE、SentencePiece等),一个汉字或词语可能被拆成多个token。
|
23 |
+
- 单独解码一个token_id时,tokenizer.decode()会把这个token当作一个完整的单元去还原为字符,但实际上它可能只是一个汉字的“片段”或“字节”,导致输出乱码或不可见字符。
|
24 |
+
- 只有把一组token_id(即一个完整的token序列)一起decode,tokenizer才能正确地拼接还原出原始的中文字符。
|
25 |
+
|
26 |
+
|
27 |
+
原本的代码:
|
28 |
+
```python
|
29 |
+
new_token_str = tokenizer.decode(next_token_id.item(), skip_special_tokens=False)
|
30 |
+
print(new_token_str, end='', flush=True)
|
31 |
+
```
|
32 |
+
|
33 |
+
更改后:
|
34 |
+
```python
|
35 |
+
prev_decoded = tokenizer.decode(token_list[:-1], skip_special_tokens=False)
|
36 |
+
curr_decoded = tokenizer.decode(token_list, skip_special_tokens=False)
|
37 |
+
print(curr_decoded[len(prev_decoded):], end='', flush=True)
|
38 |
+
```
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ac5213cee7e73410aaf2f422589537fe47e920c1bf3dd4e2aced5a4b5410442
|
3 |
+
size 217908728
|
model_cognilite.py
ADDED
@@ -0,0 +1,420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy import false
|
2 |
+
import test
|
3 |
+
from transformers import PretrainedConfig
|
4 |
+
|
5 |
+
# 定义了模型的超参数和配置
|
6 |
+
class CogniLiteConfig(PretrainedConfig):
|
7 |
+
model_type = "minimind"
|
8 |
+
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
dropout: float = 0.0,
|
12 |
+
bos_token_id: int = 1,
|
13 |
+
eos_token_id: int = 2,
|
14 |
+
hidden_act: str = 'silu',
|
15 |
+
hidden_size: int = 768,
|
16 |
+
intermediate_size: int = None,
|
17 |
+
max_position_embeddings: int = 32768,
|
18 |
+
num_attention_heads: int = 8,
|
19 |
+
num_hidden_layers: int = 16,
|
20 |
+
num_key_value_heads: int = 2,
|
21 |
+
vocab_size: int = 6400,
|
22 |
+
rms_norm_eps: float = 1e-05,
|
23 |
+
rope_theta: int = 1000000.0,
|
24 |
+
**kwargs
|
25 |
+
):
|
26 |
+
super().__init__(**kwargs)
|
27 |
+
# 各种模型超参数
|
28 |
+
self.dropout = dropout
|
29 |
+
self.bos_token_id = bos_token_id
|
30 |
+
self.eos_token_id = eos_token_id
|
31 |
+
self.hidden_act = hidden_act
|
32 |
+
self.hidden_size = hidden_size
|
33 |
+
self.intermediate_size = intermediate_size
|
34 |
+
self.max_position_embeddings = max_position_embeddings
|
35 |
+
self.num_attention_heads = num_attention_heads
|
36 |
+
self.num_hidden_layers = num_hidden_layers
|
37 |
+
self.num_key_value_heads = num_key_value_heads
|
38 |
+
self.vocab_size = vocab_size
|
39 |
+
self.rms_norm_eps = rms_norm_eps
|
40 |
+
self.rope_theta = rope_theta
|
41 |
+
|
42 |
+
import math
|
43 |
+
import torch
|
44 |
+
from torch import nn
|
45 |
+
from transformers.activations import ACT2FN
|
46 |
+
from typing import Optional, Tuple, List, Union
|
47 |
+
import torch.nn.functional as F
|
48 |
+
|
49 |
+
# RMSNorm 层实现,Root Mean Square Layer Normalization
|
50 |
+
class RMSNorm(torch.nn.Module):
|
51 |
+
def __init__(self, dim: int, eps: float = 1e-5):
|
52 |
+
super().__init__()
|
53 |
+
self.eps = eps
|
54 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
55 |
+
|
56 |
+
def _norm(self, x):
|
57 |
+
# 归一化操作
|
58 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
59 |
+
|
60 |
+
def forward(self, x):
|
61 |
+
# 应用归一化和缩放
|
62 |
+
return self.weight * self._norm(x.float()).type_as(x)
|
63 |
+
|
64 |
+
# 预计算旋转位置编码的频率
|
65 |
+
def precompute_freqs_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6):
|
66 |
+
# 生成旋转位置编码所需的 cos 和 sin
|
67 |
+
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
68 |
+
t = torch.arange(end, device=freqs.device)
|
69 |
+
freqs = torch.outer(t, freqs).float()
|
70 |
+
freqs_cos = torch.cat([torch.cos(freqs), torch.cos(freqs)], dim=-1)
|
71 |
+
freqs_sin = torch.cat([torch.sin(freqs), torch.sin(freqs)], dim=-1)
|
72 |
+
return freqs_cos, freqs_sin
|
73 |
+
|
74 |
+
# 应用旋转位置编码到 Q、K
|
75 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
76 |
+
def rotate_half(x):
|
77 |
+
# 将向量一分为二,后一半取负并交换
|
78 |
+
return torch.cat((-x[..., x.shape[-1] // 2:], x[..., : x.shape[-1] // 2]), dim=-1)
|
79 |
+
|
80 |
+
q_embed = (q * cos.unsqueeze(unsqueeze_dim)) + (rotate_half(q) * sin.unsqueeze(unsqueeze_dim))
|
81 |
+
k_embed = (k * cos.unsqueeze(unsqueeze_dim)) + (rotate_half(k) * sin.unsqueeze(unsqueeze_dim))
|
82 |
+
return q_embed, k_embed
|
83 |
+
|
84 |
+
# 将 KV 头重复扩展到所有 attention head
|
85 |
+
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
|
86 |
+
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
|
87 |
+
bs, slen, num_key_value_heads, head_dim = x.shape
|
88 |
+
if n_rep == 1:
|
89 |
+
return x
|
90 |
+
return (
|
91 |
+
x[:, :, :, None, :]
|
92 |
+
.expand(bs, slen, num_key_value_heads, n_rep, head_dim)
|
93 |
+
.reshape(bs, slen, num_key_value_heads * n_rep, head_dim)
|
94 |
+
)
|
95 |
+
|
96 |
+
# 注意力机制实现
|
97 |
+
class Attention(nn.Module):
|
98 |
+
def __init__(self, args: CogniLiteConfig):
|
99 |
+
super().__init__()
|
100 |
+
# 处理 KV 头数
|
101 |
+
self.num_key_value_heads = args.num_attention_heads if args.num_key_value_heads is None else args.num_key_value_heads
|
102 |
+
assert args.num_attention_heads % self.num_key_value_heads == 0
|
103 |
+
self.n_local_heads = args.num_attention_heads
|
104 |
+
self.n_local_kv_heads = self.num_key_value_heads
|
105 |
+
self.n_rep = self.n_local_heads // self.n_local_kv_heads
|
106 |
+
self.head_dim = args.hidden_size // args.num_attention_heads
|
107 |
+
# QKV 投影
|
108 |
+
self.q_proj = nn.Linear(args.hidden_size, args.num_attention_heads * self.head_dim, bias=False)
|
109 |
+
self.k_proj = nn.Linear(args.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
110 |
+
self.v_proj = nn.Linear(args.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
111 |
+
self.o_proj = nn.Linear(args.num_attention_heads * self.head_dim, args.hidden_size, bias=False)
|
112 |
+
self.attn_dropout = nn.Dropout(args.dropout)
|
113 |
+
self.resid_dropout = nn.Dropout(args.dropout)
|
114 |
+
self.dropout = args.dropout
|
115 |
+
# 是否使用 flash attention
|
116 |
+
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
|
117 |
+
|
118 |
+
def forward(self,
|
119 |
+
x: torch.Tensor,
|
120 |
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor], # cos 和 sin
|
121 |
+
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
122 |
+
use_cache=False,
|
123 |
+
attention_mask: Optional[torch.Tensor] = None):
|
124 |
+
bsz, seq_len, _ = x.shape
|
125 |
+
# QKV 投影并 reshape
|
126 |
+
xq, xk, xv = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
127 |
+
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim)
|
128 |
+
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
|
129 |
+
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
|
130 |
+
|
131 |
+
cos, sin = position_embeddings
|
132 |
+
# 应用旋转位置编码
|
133 |
+
xq, xk = apply_rotary_pos_emb(xq, xk, cos[:seq_len], sin[:seq_len])
|
134 |
+
|
135 |
+
# 拼接 KV cache
|
136 |
+
if past_key_value is not None:
|
137 |
+
xk = torch.cat([past_key_value[0], xk], dim=1)
|
138 |
+
xv = torch.cat([past_key_value[1], xv], dim=1)
|
139 |
+
past_kv = (xk, xv) if use_cache else None
|
140 |
+
|
141 |
+
# KV 头扩展到所有 attention head
|
142 |
+
xq, xk, xv = (
|
143 |
+
xq.transpose(1, 2),
|
144 |
+
repeat_kv(xk, self.n_rep).transpose(1, 2),
|
145 |
+
repeat_kv(xv, self.n_rep).transpose(1, 2)
|
146 |
+
)
|
147 |
+
|
148 |
+
# 使用 flash attention 或常规 attention
|
149 |
+
if self.flash and seq_len != 1:
|
150 |
+
dropout_p = self.dropout if self.training else 0.0
|
151 |
+
attn_mask = None
|
152 |
+
if attention_mask is not None:
|
153 |
+
attn_mask = attention_mask.view(bsz, 1, 1, -1).expand(bsz, self.n_local_heads, seq_len, -1)
|
154 |
+
attn_mask = attn_mask.bool() if attention_mask is not None else None
|
155 |
+
|
156 |
+
output = F.scaled_dot_product_attention(xq, xk, xv, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=True)
|
157 |
+
else:
|
158 |
+
# 计算注意力分数
|
159 |
+
scores = (xq @ xk.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
160 |
+
scores = scores + torch.triu(
|
161 |
+
torch.full((seq_len, seq_len), float("-inf"), device=scores.device),
|
162 |
+
diagonal=1
|
163 |
+
).unsqueeze(0).unsqueeze(0) # 上三角 mask
|
164 |
+
|
165 |
+
if attention_mask is not None:
|
166 |
+
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
167 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -1e9
|
168 |
+
scores = scores + extended_attention_mask
|
169 |
+
|
170 |
+
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
|
171 |
+
scores = self.attn_dropout(scores)
|
172 |
+
output = scores @ xv
|
173 |
+
|
174 |
+
# 恢复 shape 并输出
|
175 |
+
output = output.transpose(1, 2).reshape(bsz, seq_len, -1)
|
176 |
+
output = self.resid_dropout(self.o_proj(output))
|
177 |
+
return output, past_kv
|
178 |
+
|
179 |
+
# 前馈网络实现
|
180 |
+
class FeedForward(nn.Module):
|
181 |
+
def __init__(self, config: CogniLiteConfig):
|
182 |
+
super().__init__()
|
183 |
+
# 自动推断中间层维度
|
184 |
+
if config.intermediate_size is None:
|
185 |
+
intermediate_size = int(config.hidden_size * 8 / 3)
|
186 |
+
config.intermediate_size = 64 * ((intermediate_size + 64 - 1) // 64)
|
187 |
+
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
188 |
+
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
189 |
+
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
190 |
+
self.dropout = nn.Dropout(config.dropout)
|
191 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
192 |
+
|
193 |
+
def forward(self, x):
|
194 |
+
# SwiGLU 激活
|
195 |
+
return self.dropout(self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)))
|
196 |
+
|
197 |
+
# Transformer Block
|
198 |
+
class TransformerBlock(nn.Module):
|
199 |
+
def __init__(self, layer_id: int, config: CogniLiteConfig):
|
200 |
+
super().__init__()
|
201 |
+
self.num_attention_heads = config.num_attention_heads
|
202 |
+
self.hidden_size = config.hidden_size
|
203 |
+
self.head_dim = config.hidden_size // config.num_attention_heads
|
204 |
+
self.self_attn = Attention(config)
|
205 |
+
|
206 |
+
self.layer_id = layer_id
|
207 |
+
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
208 |
+
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
209 |
+
self.mlp = FeedForward(config)
|
210 |
+
|
211 |
+
def forward(self, hidden_states, position_embeddings, past_key_value=None, use_cache=False, attention_mask=None):
|
212 |
+
# 残差连接 + 注意力 + 前馈
|
213 |
+
residual = hidden_states
|
214 |
+
hidden_states, present_key_value = self.self_attn(
|
215 |
+
self.input_layernorm(hidden_states), position_embeddings,
|
216 |
+
past_key_value, use_cache, attention_mask
|
217 |
+
)
|
218 |
+
hidden_states += residual
|
219 |
+
hidden_states = hidden_states + self.mlp(self.post_attention_layernorm(hidden_states))
|
220 |
+
return hidden_states, present_key_value
|
221 |
+
|
222 |
+
# CogniLite模型主体
|
223 |
+
class CogniLiteModel(nn.Module):
|
224 |
+
def __init__(self, config: CogniLiteConfig):
|
225 |
+
super().__init__()
|
226 |
+
self.config = config
|
227 |
+
self.vocab_size, self.num_hidden_layers = config.vocab_size, config.num_hidden_layers
|
228 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
229 |
+
self.dropout = nn.Dropout(config.dropout)
|
230 |
+
self.layers = nn.ModuleList([TransformerBlock(l, config) for l in range(self.num_hidden_layers)])
|
231 |
+
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
232 |
+
|
233 |
+
# 注册旋转位置编码的 cos/sin buffer
|
234 |
+
freqs_cos, freqs_sin = precompute_freqs_cis(dim=config.hidden_size // config.num_attention_heads,
|
235 |
+
end=config.max_position_embeddings, theta=config.rope_theta)
|
236 |
+
self.register_buffer("freqs_cos", freqs_cos, persistent=False)
|
237 |
+
self.register_buffer("freqs_sin", freqs_sin, persistent=False)
|
238 |
+
|
239 |
+
def forward(self,
|
240 |
+
input_ids: Optional[torch.Tensor] = None,
|
241 |
+
attention_mask: Optional[torch.Tensor] = None,
|
242 |
+
past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
|
243 |
+
use_cache: bool = False,
|
244 |
+
**kwargs):
|
245 |
+
# input_ids: (batch, seq)
|
246 |
+
_, seq_length = input_ids.shape
|
247 |
+
past_key_values = past_key_values or [None] * len(self.layers)
|
248 |
+
start_pos = past_key_values[0][0].shape[1] if past_key_values[0] is not None else 0
|
249 |
+
|
250 |
+
# 词嵌入
|
251 |
+
hidden_states = self.dropout(self.embed_tokens(input_ids))
|
252 |
+
|
253 |
+
# 取出对应位置的 cos/sin
|
254 |
+
position_embeddings = (
|
255 |
+
self.freqs_cos[start_pos:start_pos + seq_length],
|
256 |
+
self.freqs_sin[start_pos:start_pos + seq_length]
|
257 |
+
)
|
258 |
+
|
259 |
+
presents = []
|
260 |
+
for layer_idx, (layer, past_key_value) in enumerate(zip(self.layers, past_key_values)):
|
261 |
+
hidden_states, present = layer(
|
262 |
+
hidden_states,
|
263 |
+
position_embeddings,
|
264 |
+
past_key_value=past_key_value,
|
265 |
+
use_cache=use_cache,
|
266 |
+
attention_mask=attention_mask
|
267 |
+
)
|
268 |
+
presents.append(present)
|
269 |
+
|
270 |
+
hidden_states = self.norm(hidden_states)
|
271 |
+
|
272 |
+
return hidden_states, presents, 0
|
273 |
+
|
274 |
+
class CogniLiteForCausalLM(nn.Module):
|
275 |
+
def __init__(self, config: CogniLiteConfig = None):
|
276 |
+
super().__init__()
|
277 |
+
self.config = config or CogniLiteConfig()
|
278 |
+
self.model = CogniLiteModel(self.config)
|
279 |
+
self.lm_head = nn.Linear(self.config.hidden_size, self.config.vocab_size, bias=False)
|
280 |
+
# 权重共享
|
281 |
+
self.lm_head.weight = self.model.embed_tokens.weight
|
282 |
+
|
283 |
+
def forward(self,
|
284 |
+
input_ids: Optional[torch.Tensor] = None,
|
285 |
+
attention_mask: Optional[torch.Tensor] = None,
|
286 |
+
past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
|
287 |
+
use_cache: bool = False,
|
288 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
289 |
+
**args):
|
290 |
+
h, past_kvs, aux_loss = self.model(
|
291 |
+
input_ids=input_ids,
|
292 |
+
attention_mask=attention_mask,
|
293 |
+
past_key_values=past_key_values,
|
294 |
+
use_cache=use_cache,
|
295 |
+
**args
|
296 |
+
)
|
297 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) and logits_to_keep > 0 else slice(None)
|
298 |
+
logits = self.lm_head(h[:, slice_indices, :])
|
299 |
+
return {
|
300 |
+
"last_hidden_state": h,
|
301 |
+
"logits": logits,
|
302 |
+
"aux_loss": aux_loss,
|
303 |
+
"past_key_values": past_kvs
|
304 |
+
}
|
305 |
+
|
306 |
+
import safetensors.torch
|
307 |
+
from transformers import AutoTokenizer
|
308 |
+
|
309 |
+
def init_cognilite_model():
|
310 |
+
print("start loading CogniLite model...")
|
311 |
+
|
312 |
+
# CogniLite Total parameters: 104M
|
313 |
+
# structure: (hidden_size=768, num_hidden_layers=16)
|
314 |
+
args = {
|
315 |
+
"device": "cuda" if torch.cuda.is_available() else "cpu",
|
316 |
+
"hidden_size": 768,
|
317 |
+
"num_hidden_layers": 16,
|
318 |
+
}
|
319 |
+
tokenizer = AutoTokenizer.from_pretrained('./tokenizer/')
|
320 |
+
|
321 |
+
state_dict = safetensors.torch.load_file("model.safetensors", device=args["device"])
|
322 |
+
|
323 |
+
model = CogniLiteForCausalLM(CogniLiteConfig())
|
324 |
+
|
325 |
+
# 加载模型参数
|
326 |
+
model.load_state_dict(state_dict, strict= True)
|
327 |
+
|
328 |
+
print(f'模型参数量: {sum(p.numel() for p in model.parameters() if p.requires_grad)}')
|
329 |
+
return model.eval().to(args["device"]), tokenizer
|
330 |
+
|
331 |
+
import random
|
332 |
+
import numpy as np
|
333 |
+
def setup_seed(seed):
|
334 |
+
random.seed(seed)
|
335 |
+
np.random.seed(seed)
|
336 |
+
torch.manual_seed(seed)
|
337 |
+
torch.cuda.manual_seed(seed)
|
338 |
+
torch.cuda.manual_seed_all(seed)
|
339 |
+
torch.backends.cudnn.deterministic = True
|
340 |
+
torch.backends.cudnn.benchmark = False
|
341 |
+
|
342 |
+
def communicate_with_model(random_seed):
|
343 |
+
model, tokenizer = init_cognilite_model()
|
344 |
+
|
345 |
+
print("随机种子是:", random_seed)
|
346 |
+
setup_seed(random_seed)
|
347 |
+
|
348 |
+
prompt= input("你: ")
|
349 |
+
|
350 |
+
|
351 |
+
messages = [{"role": "user", "content": prompt}]
|
352 |
+
new_prompt = tokenizer.apply_chat_template(
|
353 |
+
messages,
|
354 |
+
tokenize=False,
|
355 |
+
add_generation_prompt=True
|
356 |
+
)
|
357 |
+
|
358 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
359 |
+
|
360 |
+
inputs = tokenizer(
|
361 |
+
new_prompt,
|
362 |
+
return_tensors="pt",
|
363 |
+
truncation=True
|
364 |
+
).to(device)
|
365 |
+
|
366 |
+
# shape: [seq_len]
|
367 |
+
input_ids = inputs["input_ids"][0]
|
368 |
+
attention_mask = inputs.get("attention_mask", None)
|
369 |
+
max_new_tokens = 128
|
370 |
+
eos_token_id = tokenizer.eos_token_id
|
371 |
+
|
372 |
+
exit_reason = None
|
373 |
+
|
374 |
+
token_list = []
|
375 |
+
|
376 |
+
print("模型 token 输出:[", end=' ')
|
377 |
+
|
378 |
+
for _ in range(max_new_tokens):
|
379 |
+
with torch.no_grad():
|
380 |
+
outputs = model(
|
381 |
+
input_ids=input_ids.unsqueeze(0),
|
382 |
+
attention_mask=attention_mask
|
383 |
+
)
|
384 |
+
logits = outputs["logits"]
|
385 |
+
|
386 |
+
next_token_id = torch.argmax(logits[0, -1], dim=-1).unsqueeze(0)
|
387 |
+
if next_token_id.item() == eos_token_id:
|
388 |
+
exit_reason = "EOS token detected"
|
389 |
+
break
|
390 |
+
|
391 |
+
token_list.append(next_token_id.item())
|
392 |
+
|
393 |
+
print(next_token_id.item(), end=' ', flush=True)
|
394 |
+
|
395 |
+
# 拼接到输入
|
396 |
+
input_ids = torch.cat([input_ids, next_token_id], dim=0)
|
397 |
+
|
398 |
+
# attention_mask 也要扩展
|
399 |
+
if attention_mask is not None:
|
400 |
+
attention_mask = torch.cat([attention_mask[0], torch.ones(1, device=device, dtype=attention_mask.dtype)], dim=0).unsqueeze(0)
|
401 |
+
|
402 |
+
print("]\n模型文字输出: " + tokenizer.decode(token_list, skip_special_tokens=False))
|
403 |
+
|
404 |
+
if exit_reason is None:
|
405 |
+
print("\n 结束对话原因: 达到最大 Token 数量限制。")
|
406 |
+
|
407 |
+
elif exit_reason == "EOS token detected":
|
408 |
+
print("\n 结束对话原因: EOS token detected.")
|
409 |
+
|
410 |
+
if __name__ == "__main__":
|
411 |
+
random_type = input("请输入随机种子(整数):")
|
412 |
+
try:
|
413 |
+
random_seed = int(random_type)
|
414 |
+
if random_seed <= 0:
|
415 |
+
print("随机种子不能为非正整数,使用随机值")
|
416 |
+
random_seed = random.randint(0, 10000)
|
417 |
+
except ValueError:
|
418 |
+
print("无效的随机种子,使用随机值")
|
419 |
+
random_seed = random.randint(0, 10000)
|
420 |
+
communicate_with_model(random_seed)
|
model_lora.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
# 定义Lora网络结构
|
6 |
+
class LoRA(nn.Module):
|
7 |
+
def __init__(self, in_features, out_features, rank):
|
8 |
+
super().__init__()
|
9 |
+
self.rank = rank # LoRA的秩(rank),控制低秩矩阵的大小
|
10 |
+
self.A = nn.Linear(in_features, rank, bias=False) # 低秩矩阵A
|
11 |
+
self.B = nn.Linear(rank, out_features, bias=False) # 低秩矩阵B
|
12 |
+
# 矩阵A高斯初始化
|
13 |
+
self.A.weight.data.normal_(mean=0.0, std=0.02)
|
14 |
+
# 矩阵B全0初始化
|
15 |
+
self.B.weight.data.zero_()
|
16 |
+
|
17 |
+
def forward(self, x):
|
18 |
+
return self.B(self.A(x))
|
19 |
+
|
20 |
+
|
21 |
+
def apply_lora(model, rank=8):
|
22 |
+
for name, module in model.named_modules():
|
23 |
+
if isinstance(module, nn.Linear) and module.weight.shape[0] == module.weight.shape[1]:
|
24 |
+
lora = LoRA(module.weight.shape[0], module.weight.shape[1], rank=rank).to(model.device)
|
25 |
+
setattr(module, "lora", lora)
|
26 |
+
original_forward = module.forward
|
27 |
+
|
28 |
+
# 显式绑定
|
29 |
+
def forward_with_lora(x, layer1=original_forward, layer2=lora):
|
30 |
+
return layer1(x) + layer2(x)
|
31 |
+
|
32 |
+
module.forward = forward_with_lora
|
33 |
+
|
34 |
+
|
35 |
+
def load_lora(model, path):
|
36 |
+
state_dict = torch.load(path, map_location=model.device)
|
37 |
+
for name, module in model.named_modules():
|
38 |
+
if hasattr(module, 'lora'):
|
39 |
+
lora_state = {k.replace(f'{name}.lora.', ''): v for k, v in state_dict.items() if f'{name}.lora.' in k}
|
40 |
+
module.lora.load_state_dict(lora_state)
|
41 |
+
|
42 |
+
|
43 |
+
def save_lora(model, path):
|
44 |
+
state_dict = {}
|
45 |
+
for name, module in model.named_modules():
|
46 |
+
if hasattr(module, 'lora'):
|
47 |
+
lora_state = {f'{name}.lora.{k}': v for k, v in module.lora.state_dict().items()}
|
48 |
+
state_dict.update(lora_state)
|
49 |
+
torch.save(state_dict, path)
|
tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|im_start|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|im_end|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<|endoftext|>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": false,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<|im_start|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "<|im_end|>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"additional_special_tokens": [],
|
32 |
+
"bos_token": "<|im_start|>",
|
33 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{{ '<|im_start|>system\\n' + system_message + '<|im_end|>\\n' }}{% else %}{{ '<|im_start|>system\\nYou are a helpful assistant<|im_end|>\\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|im_start|>user\\n' + content + '<|im_end|>\\n<|im_start|>assistant\\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|im_end|>' + '\\n' }}{% endif %}{% endfor %}",
|
34 |
+
"clean_up_tokenization_spaces": false,
|
35 |
+
"eos_token": "<|im_end|>",
|
36 |
+
"extra_special_tokens": {},
|
37 |
+
"legacy": true,
|
38 |
+
"model_max_length": 32768,
|
39 |
+
"pad_token": "<|endoftext|>",
|
40 |
+
"sp_model_kwargs": {},
|
41 |
+
"spaces_between_special_tokens": false,
|
42 |
+
"tokenizer_class": "PreTrainedTokenizer",
|
43 |
+
"unk_token": "<|endoftext|>"
|
44 |
+
}
|
train_lora.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
from sympy import true
|
5 |
+
|
6 |
+
__package__ = "trainer"
|
7 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
8 |
+
|
9 |
+
import argparse
|
10 |
+
import time
|
11 |
+
import math
|
12 |
+
import warnings
|
13 |
+
import torch
|
14 |
+
from torch import optim, nn
|
15 |
+
import torch.distributed as dist
|
16 |
+
from contextlib import nullcontexts
|
17 |
+
from torch.utils.data import DataLoader, DistributedSampler
|
18 |
+
from transformers import AutoTokenizer
|
19 |
+
from model_cognilite import CogniLiteConfig, CogniLiteForCausalLM
|
20 |
+
from dataset.lm_dataset import SFTDataset
|
21 |
+
from model_lora import load_lora, save_lora, apply_lora
|
22 |
+
|
23 |
+
warnings.filterwarnings('ignore')
|
24 |
+
|
25 |
+
|
26 |
+
# Logger function
|
27 |
+
def Logger(content):
|
28 |
+
if not ddp or dist.get_rank() == 0:
|
29 |
+
print(content)
|
30 |
+
|
31 |
+
|
32 |
+
def get_lr(current_step, total_steps, lr):
|
33 |
+
return lr / 10 + 0.5 * lr * (1 + math.cos(math.pi * current_step / total_steps))
|
34 |
+
|
35 |
+
|
36 |
+
# 代码和full_sft「几乎」一致
|
37 |
+
def train_epoch(epoch, wandb):
|
38 |
+
loss_fct = nn.CrossEntropyLoss(reduction='none')
|
39 |
+
start_time = time.time()
|
40 |
+
for step, (X, Y, loss_mask) in enumerate(train_loader):
|
41 |
+
X = X.to(args.device)
|
42 |
+
Y = Y.to(args.device)
|
43 |
+
loss_mask = loss_mask.to(args.device)
|
44 |
+
lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch, args.learning_rate)
|
45 |
+
for param_group in optimizer.param_groups:
|
46 |
+
param_group['lr'] = lr
|
47 |
+
|
48 |
+
with ctx:
|
49 |
+
res = model(X)
|
50 |
+
loss = loss_fct(
|
51 |
+
res.logits.view(-1, res.logits.size(-1)),
|
52 |
+
Y.view(-1)
|
53 |
+
).view(Y.size())
|
54 |
+
loss = (loss * loss_mask).sum() / loss_mask.sum()
|
55 |
+
loss += res.aux_loss
|
56 |
+
loss = loss / args.accumulation_steps
|
57 |
+
|
58 |
+
scaler.scale(loss).backward()
|
59 |
+
|
60 |
+
if (step + 1) % args.accumulation_steps == 0:
|
61 |
+
scaler.unscale_(optimizer)
|
62 |
+
torch.nn.utils.clip_grad_norm_(lora_params, args.grad_clip)
|
63 |
+
|
64 |
+
scaler.step(optimizer)
|
65 |
+
scaler.update()
|
66 |
+
|
67 |
+
optimizer.zero_grad(set_to_none=True)
|
68 |
+
|
69 |
+
if step % args.log_interval == 0:
|
70 |
+
spend_time = time.time() - start_time
|
71 |
+
Logger(
|
72 |
+
'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.12f} epoch_Time:{}min:'.format(
|
73 |
+
epoch + 1,
|
74 |
+
args.epochs,
|
75 |
+
step,
|
76 |
+
iter_per_epoch,
|
77 |
+
loss.item() * args.accumulation_steps,
|
78 |
+
optimizer.param_groups[-1]['lr'],
|
79 |
+
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
|
80 |
+
|
81 |
+
if (wandb is not None) and (not ddp or dist.get_rank() == 0):
|
82 |
+
wandb.log({"loss": loss * args.accumulation_steps,
|
83 |
+
"lr": optimizer.param_groups[-1]['lr'],
|
84 |
+
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
|
85 |
+
|
86 |
+
if (step + 1) % args.save_interval == 0 and (not ddp or dist.get_rank() == 0):
|
87 |
+
model.eval()
|
88 |
+
lora_save_path = f'{args.save_dir}/lora/{args.lora_name}_{lm_config.hidden_size}.pth'
|
89 |
+
os.makedirs(os.path.dirname(lora_save_path), exist_ok=True)
|
90 |
+
# 【区别1】只保存lora权重即可
|
91 |
+
save_lora(model, lora_save_path)
|
92 |
+
model.train()
|
93 |
+
|
94 |
+
|
95 |
+
def init_model(lm_config):
|
96 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
97 |
+
model_path = os.path.join(current_dir, '..', 'model')
|
98 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
99 |
+
model = CogniLiteForCausalLM(lm_config)
|
100 |
+
if args.minimind2:
|
101 |
+
model_data_path = os.path.join(current_dir, '..', 'MiniMind2')
|
102 |
+
model.from_pretrained(model_data_path)
|
103 |
+
return model.to(args.device), tokenizer
|
104 |
+
moe_path = '_moe' if lm_config.use_moe else ''
|
105 |
+
ckp = f'{args.save_dir}/full_sft_{lm_config.hidden_size}{moe_path}.pth'
|
106 |
+
state_dict = torch.load(ckp, map_location=args.device)
|
107 |
+
model.load_state_dict(state_dict, strict=False)
|
108 |
+
return model.to(args.device), tokenizer
|
109 |
+
|
110 |
+
|
111 |
+
def init_distributed_mode():
|
112 |
+
if not ddp: return
|
113 |
+
global ddp_local_rank, DEVICE
|
114 |
+
|
115 |
+
dist.init_process_group(backend="nccl")
|
116 |
+
ddp_local_rank = int(os.environ["LOCAL_RANK"])
|
117 |
+
DEVICE = f"cuda:{ddp_local_rank}"
|
118 |
+
torch.cuda.set_device(DEVICE)
|
119 |
+
|
120 |
+
|
121 |
+
if __name__ == "__main__":
|
122 |
+
parser = argparse.ArgumentParser(description="MiniMind SFT with LoRA")
|
123 |
+
parser.add_argument("--out_dir", type=str, default="../out")
|
124 |
+
parser.add_argument("--epochs", type=int, default=10)
|
125 |
+
parser.add_argument("--batch_size", type=int, default=32)
|
126 |
+
parser.add_argument("--learning_rate", type=float, default=1e-4)
|
127 |
+
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu")
|
128 |
+
parser.add_argument("--dtype", type=str, default="bfloat16")
|
129 |
+
parser.add_argument("--use_wandb", action="store_true")
|
130 |
+
parser.add_argument("--wandb_project", type=str, default="MiniMind-LoRA-SFT")
|
131 |
+
parser.add_argument("--num_workers", type=int, default=1)
|
132 |
+
parser.add_argument("--ddp", action="store_true")
|
133 |
+
parser.add_argument("--accumulation_steps", type=int, default=1)
|
134 |
+
parser.add_argument("--grad_clip", type=float, default=1.0)
|
135 |
+
parser.add_argument("--warmup_iters", type=int, default=0)
|
136 |
+
parser.add_argument("--log_interval", type=int, default=100)
|
137 |
+
parser.add_argument("--save_interval", type=int, default=100)
|
138 |
+
parser.add_argument('--local_rank', type=int, default=-1)
|
139 |
+
parser.add_argument('--hidden_size', default=512, type=int)
|
140 |
+
parser.add_argument('--num_hidden_layers', default=8, type=int)
|
141 |
+
parser.add_argument('--max_seq_len', default=512, type=int)
|
142 |
+
parser.add_argument('--use_moe', default=False, type=bool)
|
143 |
+
parser.add_argument("--data_path", type=str, default="../dataset/lora_medical.jsonl")
|
144 |
+
parser.add_argument("--lora_name", type=str, default="lora_medical", help="根据任务保存成lora_(英文/医学/心理...)")
|
145 |
+
parser.add_argument("--minimind2", type=bool, default=true, help="是否使用从huggingface下载下来的MiniMind2模型")
|
146 |
+
args = parser.parse_args()
|
147 |
+
|
148 |
+
if args.minimind2 == true:
|
149 |
+
args.hidden_size = 768
|
150 |
+
args.num_hidden_layers=16
|
151 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
152 |
+
args.data_path = os.path.join(current_dir, "../dataset/lora_medical.jsonl")
|
153 |
+
|
154 |
+
|
155 |
+
lm_config = CogniLiteConfig(hidden_size=args.hidden_size, num_hidden_layers=args.num_hidden_layers,
|
156 |
+
use_moe=args.use_moe)
|
157 |
+
args.save_dir = os.path.join(args.out_dir)
|
158 |
+
os.makedirs(args.save_dir, exist_ok=True)
|
159 |
+
os.makedirs(args.out_dir, exist_ok=True)
|
160 |
+
tokens_per_iter = args.batch_size * args.max_seq_len
|
161 |
+
device_type = "cuda" if "cuda" in args.device else "cpu"
|
162 |
+
|
163 |
+
ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast()
|
164 |
+
ddp = int(os.environ.get("RANK", -1)) != -1 # is this a ddp run?
|
165 |
+
ddp_local_rank, DEVICE = 0, "cuda:0"
|
166 |
+
base_seed = 1337
|
167 |
+
torch.manual_seed(base_seed)
|
168 |
+
torch.cuda.manual_seed(base_seed)
|
169 |
+
|
170 |
+
if ddp:
|
171 |
+
init_distributed_mode()
|
172 |
+
args.device = torch.device(DEVICE)
|
173 |
+
rank = dist.get_rank()
|
174 |
+
torch.manual_seed(base_seed + rank)
|
175 |
+
# 同时设置 CUDA 的随机种子
|
176 |
+
torch.cuda.manual_seed(base_seed + rank)
|
177 |
+
|
178 |
+
args.wandb_run_name = f"MiniMind-Lora-SFT-Epoch-{args.epochs}-BatchSize-{args.batch_size}-LearningRate-{args.learning_rate}"
|
179 |
+
if args.use_wandb and (not ddp or ddp_local_rank == 0):
|
180 |
+
import wandb
|
181 |
+
|
182 |
+
wandb.init(project=args.wandb_project, name=args.wandb_run_name)
|
183 |
+
else:
|
184 |
+
wandb = None
|
185 |
+
|
186 |
+
model, tokenizer = init_model(lm_config)
|
187 |
+
apply_lora(model)
|
188 |
+
|
189 |
+
total_params = sum(p.numel() for p in model.parameters()) # 总参数数量
|
190 |
+
lora_params_count = sum(p.numel() for name, p in model.named_parameters() if 'lora' in name) # LoRA 参数数量
|
191 |
+
if not ddp or dist.get_rank() == 0:
|
192 |
+
print(f"LLM 总参数量: {total_params}")
|
193 |
+
print(f"LoRA 参数量: {lora_params_count}")
|
194 |
+
print(f"LoRA 参数占比: {lora_params_count / total_params * 100:.2f}%")
|
195 |
+
|
196 |
+
for name, param in model.named_parameters():
|
197 |
+
if 'lora' not in name:
|
198 |
+
param.requires_grad = False
|
199 |
+
lora_params = []
|
200 |
+
for name, param in model.named_parameters():
|
201 |
+
if 'lora' in name:
|
202 |
+
lora_params.append(param)
|
203 |
+
|
204 |
+
# 只对 LoRA 参数进行优化
|
205 |
+
optimizer = optim.AdamW(lora_params, lr=args.learning_rate)
|
206 |
+
train_ds = SFTDataset(args.data_path, tokenizer, max_length=args.max_seq_len)
|
207 |
+
train_sampler = DistributedSampler(train_ds) if ddp else None
|
208 |
+
train_loader = DataLoader(
|
209 |
+
train_ds,
|
210 |
+
batch_size=args.batch_size,
|
211 |
+
pin_memory=True,
|
212 |
+
drop_last=False,
|
213 |
+
shuffle=False,
|
214 |
+
num_workers=args.num_workers,
|
215 |
+
sampler=train_sampler
|
216 |
+
)
|
217 |
+
|
218 |
+
scaler = torch.cuda.amp.GradScaler("cuda", enabled=(args.dtype in ['float16', 'bfloat16']))
|
219 |
+
iter_per_epoch = len(train_loader)
|
220 |
+
|
221 |
+
for epoch in range(args.epochs):
|
222 |
+
train_epoch(epoch, wandb)
|