--- base_model: - ytu-ce-cosmos/Turkish-Llama-8b-Instruct-v0.1 - meta-llama/Llama-3.1-8B - meta-llama/Llama-3.1-8B-Instruct tags: - merge - mergekit - lazymergekit - ytu-ce-cosmos/Turkish-Llama-8b-Instruct-v0.1 - meta-llama/Llama-3.1-8B - meta-llama/Llama-3.1-8B-Instruct --- # Hibrid-Llama-Linear Hibrid-Llama-Linear is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [ytu-ce-cosmos/Turkish-Llama-8b-Instruct-v0.1](https://huggingface.co/ytu-ce-cosmos/Turkish-Llama-8b-Instruct-v0.1) * [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) * [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) ## 🧩 Configuration ```yaml model_type: llama dtype: bfloat16 merge_method: linear models: - model: ytu-ce-cosmos/Turkish-Llama-8b-Instruct-v0.1 parameters: weight: 0.5 - model: meta-llama/Llama-3.1-8B parameters: weight: 0.25 - model: meta-llama/Llama-3.1-8B-Instruct parameters: weight: 0.25 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "matrixportal/Hibrid-Llama-Linear" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```