Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -43,126 +43,3 @@ Refer to the [original model card](https://huggingface.co/google/gemma-2-9b-it)
|
|
43 |
| [Download](https://huggingface.co/matrixportal/gemma-2-9b-it-GGUF/resolve/main/gemma-2-9b-it-f16.gguf) |  | Maximum accuracy |
|
44 |
|
45 |
💡 **Tip:** Use `F16` for maximum precision when quality is critical
|
46 |
-
|
47 |
-
# GGUF Model Quantization & Usage Guide with llama.cpp
|
48 |
-
|
49 |
-
## What is GGUF and Quantization?
|
50 |
-
|
51 |
-
**GGUF** (GPT-Generated Unified Format) is an efficient model file format developed by the `llama.cpp` team that:
|
52 |
-
- Supports multiple quantization levels
|
53 |
-
- Works cross-platform
|
54 |
-
- Enables fast loading and inference
|
55 |
-
|
56 |
-
**Quantization** converts model weights to lower precision data types (e.g., 4-bit integers instead of 32-bit floats) to:
|
57 |
-
- Reduce model size
|
58 |
-
- Decrease memory usage
|
59 |
-
- Speed up inference
|
60 |
-
- (With minor accuracy trade-offs)
|
61 |
-
|
62 |
-
## Step-by-Step Guide
|
63 |
-
|
64 |
-
### 1. Prerequisites
|
65 |
-
|
66 |
-
```bash
|
67 |
-
# System updates
|
68 |
-
sudo apt update && sudo apt upgrade -y
|
69 |
-
|
70 |
-
# Dependencies
|
71 |
-
sudo apt install -y build-essential cmake python3-pip
|
72 |
-
|
73 |
-
# Clone and build llama.cpp
|
74 |
-
git clone https://github.com/ggerganov/llama.cpp
|
75 |
-
cd llama.cpp
|
76 |
-
make -j4
|
77 |
-
```
|
78 |
-
|
79 |
-
### 2. Using Quantized Models from Hugging Face
|
80 |
-
|
81 |
-
My automated quantization script produces models in this format:
|
82 |
-
```
|
83 |
-
https://huggingface.co/matrixportal/gemma-2-9b-it-GGUF/resolve/main/gemma-2-9b-it-q4_k_m.gguf
|
84 |
-
```
|
85 |
-
|
86 |
-
Download your quantized model directly:
|
87 |
-
|
88 |
-
```bash
|
89 |
-
wget https://huggingface.co/matrixportal/gemma-2-9b-it-GGUF/resolve/main/gemma-2-9b-it-q4_k_m.gguf
|
90 |
-
```
|
91 |
-
|
92 |
-
### 3. Running the Quantized Model
|
93 |
-
|
94 |
-
Basic usage:
|
95 |
-
```bash
|
96 |
-
./main -m gemma-2-9b-it-q4_k_m.gguf -p "Your prompt here" -n 128
|
97 |
-
```
|
98 |
-
|
99 |
-
Example with a creative writing prompt:
|
100 |
-
```bash
|
101 |
-
./main -m gemma-2-9b-it-q4_k_m.gguf -p "[INST] Write a short poem about AI quantization in the style of Shakespeare [/INST]" -n 256 -c 2048 -t 8 --temp 0.7
|
102 |
-
```
|
103 |
-
|
104 |
-
Advanced parameters:
|
105 |
-
```bash
|
106 |
-
./main -m gemma-2-9b-it-q4_k_m.gguf -p "Question: What is the GGUF format?
|
107 |
-
Answer:" -n 256 -c 2048 -t 8 --temp 0.7 --top-k 40 --top-p 0.9
|
108 |
-
```
|
109 |
-
|
110 |
-
### 4. Python Integration
|
111 |
-
|
112 |
-
Install the Python package:
|
113 |
-
```bash
|
114 |
-
pip install llama-cpp-python
|
115 |
-
```
|
116 |
-
|
117 |
-
Example script:
|
118 |
-
```python
|
119 |
-
from llama_cpp import Llama
|
120 |
-
|
121 |
-
# Initialize the model
|
122 |
-
llm = Llama(
|
123 |
-
model_path="gemma-2-9b-it-q4_k_m.gguf",
|
124 |
-
n_ctx=2048,
|
125 |
-
n_threads=8
|
126 |
-
)
|
127 |
-
|
128 |
-
# Run inference
|
129 |
-
response = llm(
|
130 |
-
"[INST] Explain GGUF quantization to a beginner [/INST]",
|
131 |
-
max_tokens=256,
|
132 |
-
temperature=0.7,
|
133 |
-
top_p=0.9
|
134 |
-
)
|
135 |
-
|
136 |
-
print(response["choices"][0]["text"])
|
137 |
-
```
|
138 |
-
|
139 |
-
## Performance Tips
|
140 |
-
|
141 |
-
1. **Hardware Utilization**:
|
142 |
-
- Set thread count with `-t` (typically CPU core count)
|
143 |
-
- Compile with CUDA/OpenCL for GPU support
|
144 |
-
|
145 |
-
2. **Memory Optimization**:
|
146 |
-
- Lower quantization (like q4_k_m) uses less RAM
|
147 |
-
- Adjust context size with `-c` parameter
|
148 |
-
|
149 |
-
3. **Speed/Accuracy Balance**:
|
150 |
-
- Higher bit quantization is slower but more accurate
|
151 |
-
- Reduce randomness with `--temp 0` for consistent results
|
152 |
-
|
153 |
-
## FAQ
|
154 |
-
|
155 |
-
**Q: What quantization levels are available?**
|
156 |
-
A: Common options include q4_0, q4_k_m, q5_0, q5_k_m, q8_0
|
157 |
-
|
158 |
-
**Q: How much performance loss occurs with q4_k_m?**
|
159 |
-
A: Typically 2-5% accuracy reduction but 4x smaller size
|
160 |
-
|
161 |
-
**Q: How to enable GPU support?**
|
162 |
-
A: Build with `make LLAMA_CUBLAS=1` for NVIDIA GPUs
|
163 |
-
|
164 |
-
## Useful Resources
|
165 |
-
|
166 |
-
1. [llama.cpp GitHub](https://github.com/ggerganov/llama.cpp)
|
167 |
-
2. [GGUF Format Specs](https://github.com/ggerganov/ggml/blob/master/docs/gguf.md)
|
168 |
-
3. [Hugging Face Model Hub](https://huggingface.co/models)
|
|
|
43 |
| [Download](https://huggingface.co/matrixportal/gemma-2-9b-it-GGUF/resolve/main/gemma-2-9b-it-f16.gguf) |  | Maximum accuracy |
|
44 |
|
45 |
💡 **Tip:** Use `F16` for maximum precision when quality is critical
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|