Model save
Browse files- README.md +28 -25
- all_results.json +5 -17
- model.safetensors +1 -1
- runs/Jun16_16-31-08_3eb3419cb417/events.out.tfevents.1750091469.3eb3419cb417.1588.0 +3 -0
- train_results.json +5 -5
- training_args.bin +1 -1
README.md
CHANGED
@@ -16,15 +16,15 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [maximuspowers/bert-philosophy-adapted](https://huggingface.co/maximuspowers/bert-philosophy-adapted) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss: 0.
|
20 |
-
- Exact Match Accuracy: 0.
|
21 |
-
- Macro Precision: 0.
|
22 |
-
- Macro Recall: 0.
|
23 |
-
- Macro F1: 0.
|
24 |
-
- Micro Precision: 0.
|
25 |
-
- Micro Recall: 0.
|
26 |
-
- Micro F1: 0.
|
27 |
-
- Hamming Loss: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -52,28 +52,31 @@ The following hyperparameters were used during training:
|
|
52 |
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
53 |
- lr_scheduler_type: linear
|
54 |
- lr_scheduler_warmup_steps: 100
|
55 |
-
- num_epochs:
|
56 |
- mixed_precision_training: Native AMP
|
57 |
|
58 |
### Training results
|
59 |
|
60 |
| Training Loss | Epoch | Step | Validation Loss | Exact Match Accuracy | Macro Precision | Macro Recall | Macro F1 | Micro Precision | Micro Recall | Micro F1 | Hamming Loss |
|
61 |
|:-------------:|:-------:|:----:|:---------------:|:--------------------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------:|
|
62 |
-
| 1.
|
63 |
-
| 1.
|
64 |
-
| 1.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
|
|
|
|
|
|
77 |
|
78 |
|
79 |
### Framework versions
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [maximuspowers/bert-philosophy-adapted](https://huggingface.co/maximuspowers/bert-philosophy-adapted) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.5317
|
20 |
+
- Exact Match Accuracy: 0.3793
|
21 |
+
- Macro Precision: 0.3860
|
22 |
+
- Macro Recall: 0.2534
|
23 |
+
- Macro F1: 0.2900
|
24 |
+
- Micro Precision: 0.7953
|
25 |
+
- Micro Recall: 0.5025
|
26 |
+
- Micro F1: 0.6159
|
27 |
+
- Hamming Loss: 0.0511
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
52 |
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
53 |
- lr_scheduler_type: linear
|
54 |
- lr_scheduler_warmup_steps: 100
|
55 |
+
- num_epochs: 500
|
56 |
- mixed_precision_training: Native AMP
|
57 |
|
58 |
### Training results
|
59 |
|
60 |
| Training Loss | Epoch | Step | Validation Loss | Exact Match Accuracy | Macro Precision | Macro Recall | Macro F1 | Micro Precision | Micro Recall | Micro F1 | Hamming Loss |
|
61 |
|:-------------:|:-------:|:----:|:---------------:|:--------------------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------:|
|
62 |
+
| 1.8197 | 1.3724 | 100 | 0.8927 | 0.0207 | 0.0208 | 0.0118 | 0.0150 | 0.3333 | 0.0299 | 0.0548 | 0.0840 |
|
63 |
+
| 1.2941 | 2.7448 | 200 | 0.7412 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0815 |
|
64 |
+
| 1.1363 | 4.1103 | 300 | 0.7610 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0815 |
|
65 |
+
| 0.9381 | 5.4828 | 400 | 0.6290 | 0.0690 | 0.0588 | 0.0200 | 0.0299 | 1.0 | 0.0796 | 0.1475 | 0.0751 |
|
66 |
+
| 0.9246 | 6.8552 | 500 | 0.5927 | 0.1862 | 0.1176 | 0.0610 | 0.0803 | 1.0 | 0.1990 | 0.3320 | 0.0653 |
|
67 |
+
| 0.8558 | 8.2207 | 600 | 0.6186 | 0.2621 | 0.1680 | 0.0969 | 0.1206 | 0.9298 | 0.2637 | 0.4109 | 0.0617 |
|
68 |
+
| 0.7893 | 9.5931 | 700 | 0.6193 | 0.2483 | 0.1702 | 0.1259 | 0.1410 | 0.9483 | 0.2736 | 0.4247 | 0.0604 |
|
69 |
+
| 0.6894 | 10.9655 | 800 | 0.5421 | 0.2759 | 0.2267 | 0.1361 | 0.1545 | 0.9403 | 0.3134 | 0.4701 | 0.0576 |
|
70 |
+
| 0.6505 | 12.3310 | 900 | 0.5643 | 0.3034 | 0.2138 | 0.1478 | 0.1695 | 0.92 | 0.3433 | 0.5 | 0.0560 |
|
71 |
+
| 0.6225 | 13.7034 | 1000 | 0.5802 | 0.3034 | 0.2000 | 0.1585 | 0.1745 | 0.8471 | 0.3582 | 0.5035 | 0.0576 |
|
72 |
+
| 0.5806 | 15.0690 | 1100 | 0.6155 | 0.3448 | 0.1952 | 0.1541 | 0.1711 | 0.7917 | 0.3781 | 0.5118 | 0.0588 |
|
73 |
+
| 0.526 | 16.4414 | 1200 | 0.5498 | 0.3655 | 0.3618 | 0.2035 | 0.2416 | 0.8333 | 0.4478 | 0.5825 | 0.0523 |
|
74 |
+
| 0.4805 | 17.8138 | 1300 | 0.5925 | 0.3793 | 0.3585 | 0.1982 | 0.2365 | 0.8431 | 0.4279 | 0.5677 | 0.0531 |
|
75 |
+
| 0.4522 | 19.1793 | 1400 | 0.5409 | 0.3862 | 0.2757 | 0.2045 | 0.2237 | 0.8070 | 0.4577 | 0.5841 | 0.0531 |
|
76 |
+
| 0.4181 | 20.5517 | 1500 | 0.5604 | 0.4138 | 0.3574 | 0.2410 | 0.2738 | 0.8417 | 0.5025 | 0.6293 | 0.0483 |
|
77 |
+
| 0.4105 | 21.9241 | 1600 | 0.5579 | 0.3586 | 0.3659 | 0.2188 | 0.2565 | 0.8641 | 0.4428 | 0.5855 | 0.0511 |
|
78 |
+
| 0.3702 | 23.2897 | 1700 | 0.5602 | 0.3862 | 0.3278 | 0.2288 | 0.2616 | 0.8348 | 0.4776 | 0.6076 | 0.0503 |
|
79 |
+
| 0.3586 | 24.6621 | 1800 | 0.5317 | 0.3793 | 0.3860 | 0.2534 | 0.2900 | 0.7953 | 0.5025 | 0.6159 | 0.0511 |
|
80 |
|
81 |
|
82 |
### Framework versions
|
all_results.json
CHANGED
@@ -1,20 +1,8 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"eval_exact_match_accuracy": 0.3644067796610169,
|
4 |
-
"eval_hamming_loss": 0.054835493519441676,
|
5 |
-
"eval_loss": 0.5794392228126526,
|
6 |
-
"eval_macro_f1": 0.25224180581323435,
|
7 |
-
"eval_macro_precision": 0.3426470588235294,
|
8 |
-
"eval_macro_recall": 0.2253973559120618,
|
9 |
-
"eval_micro_f1": 0.5736434108527132,
|
10 |
-
"eval_micro_precision": 0.7474747474747475,
|
11 |
-
"eval_micro_recall": 0.46540880503144655,
|
12 |
-
"eval_runtime": 0.5885,
|
13 |
-
"eval_samples_per_second": 200.516,
|
14 |
-
"eval_steps_per_second": 25.489,
|
15 |
"total_flos": 0.0,
|
16 |
-
"train_loss": 0.
|
17 |
-
"train_runtime":
|
18 |
-
"train_samples_per_second":
|
19 |
-
"train_steps_per_second":
|
20 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 24.662068965517243,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
"total_flos": 0.0,
|
4 |
+
"train_loss": 0.811522379981147,
|
5 |
+
"train_runtime": 483.752,
|
6 |
+
"train_samples_per_second": 1197.928,
|
7 |
+
"train_steps_per_second": 75.452
|
8 |
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 441154988
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac436ea42be3a0f79e978204ed481681e1f26f7ed9f262da8c7c3f62e54ecf1b
|
3 |
size 441154988
|
runs/Jun16_16-31-08_3eb3419cb417/events.out.tfevents.1750091469.3eb3419cb417.1588.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a504c49d0da0d583f723facd3d03f367f893ce93c52be45bc27776ecf41b7097
|
3 |
+
size 235121
|
train_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
"total_flos": 0.0,
|
4 |
-
"train_loss": 0.
|
5 |
-
"train_runtime":
|
6 |
-
"train_samples_per_second":
|
7 |
-
"train_steps_per_second":
|
8 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 24.662068965517243,
|
3 |
"total_flos": 0.0,
|
4 |
+
"train_loss": 0.811522379981147,
|
5 |
+
"train_runtime": 483.752,
|
6 |
+
"train_samples_per_second": 1197.928,
|
7 |
+
"train_steps_per_second": 75.452
|
8 |
}
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 5368
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ad470715ab72b871d3a65bdcdea0b6b269785151fb87625772b65f49119f35d
|
3 |
size 5368
|