File size: 3,056 Bytes
cc63d1b
 
 
 
 
 
 
 
 
 
64801a9
cc63d1b
64801a9
 
cc63d1b
7898fe8
a9093e5
b2c3326
7898fe8
 
 
 
 
 
e0d0610
 
 
 
134b2ad
e0d0610
 
 
 
 
6244a94
e0d0610
 
87daa90
 
e0d0610
 
 
 
134b2ad
 
 
 
 
 
130e5a7
134b2ad
 
 
 
 
 
 
 
130e5a7
134b2ad
 
 
130e5a7
134b2ad
 
 
 
 
 
 
 
 
 
 
 
130e5a7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: mit
language:
  - lat
datasets:
  - CATMuS/medieval
tags:
  - trocr
  - image-to-text
widget:
  - src: https://huggingface.co/medieval-data/trocr-medieval-latin-caroline/resolve/main/images/heldout2.png
    example_title: Heldout Sample 1
  - src: https://huggingface.co/medieval-data/trocr-medieval-latin-caroline/resolve/main/images/heldout1.png
    example_title: Heldout Sample 2
---

![logo](logo-banner.png)

# About

This is a TROcr model for medieval Latin, specifically the Caroline script. The base model was [microsoft/trocr-base-handwritten](https://huggingface.co/microsoft/trocr-base-handwritten) It was finetuned from the examples in the [CATMuS](https://huggingface.co/datasets/CATMuS/medieval) dataset.

The model has not been formally tested. Preliminary examination indicates that further finetuning is needed.

Finetuning was done with finetune.py found in this repository.

# Usage

```python
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from PIL import Image
import requests

# load image from the IAM database
https://huggingface.co/medieval-data/trocr-medieval-latin-caroline/resolve/main/images/heldout1.png
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")

processor = TrOCRProcessor.from_pretrained('medieval-data/trocr-medieval-latin-caroline')
model = VisionEncoderDecoderModel.from_pretrained('medieval-data/trocr-medieval-latin-caroline')
pixel_values = processor(images=image, return_tensors="pt").pixel_values

generated_ids = model.generate(pixel_values)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
```

# BibTeX entry and citation info

## TrOCR Paper

```tex
@misc{li2021trocr,
      title={TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models}, 
      author={Minghao Li and Tengchao Lv and Lei Cui and Yijuan Lu and Dinei Florencio and Cha Zhang and Zhoujun Li and Furu Wei},
      year={2021},
      eprint={2109.10282},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

## CATMuS Paper

```tex
@unpublished{clerice:hal-04453952,
  TITLE = {{CATMuS Medieval: A multilingual large-scale cross-century dataset in Latin script for handwritten text recognition and beyond}},
  AUTHOR = {Cl{\'e}rice, Thibault and Pinche, Ariane and Vlachou-Efstathiou, Malamatenia and Chagu{\'e}, Alix and Camps, Jean-Baptiste and Gille-Levenson, Matthias and Brisville-Fertin, Olivier and Fischer, Franz and Gervers, Michaels and Boutreux, Agn{\`e}s and Manton, Avery and Gabay, Simon and O'Connor, Patricia and Haverals, Wouter and Kestemont, Mike and Vandyck, Caroline and Kiessling, Benjamin},
  URL = {https://inria.hal.science/hal-04453952},
  NOTE = {working paper or preprint},
  YEAR = {2024},
  MONTH = Feb,
  KEYWORDS = {Historical sources ; medieval manuscripts ; Latin scripts ; benchmarking dataset ; multilingual ; handwritten text recognition},
  PDF = {https://inria.hal.science/hal-04453952/file/ICDAR24___CATMUS_Medieval-1.pdf},
  HAL_ID = {hal-04453952},
  HAL_VERSION = {v1},
}
```