Upload stg_ltx_i2v_pipeline.py
Browse files- stg_ltx_i2v_pipeline.py +595 -0
stg_ltx_i2v_pipeline.py
ADDED
@@ -0,0 +1,595 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import types
|
16 |
+
import inspect
|
17 |
+
from typing import Callable, Dict, List, Optional, Union, Tuple
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import torch
|
21 |
+
from transformers import T5EncoderModel, T5TokenizerFast
|
22 |
+
|
23 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
24 |
+
from diffusers.image_processor import PipelineImageInput
|
25 |
+
from diffusers.loaders import FromSingleFileMixin
|
26 |
+
from diffusers.pipelines.ltx.pipeline_ltx_image2video import LTXImageToVideoPipeline
|
27 |
+
from diffusers.models.autoencoders import AutoencoderKLLTXVideo
|
28 |
+
from diffusers.models.transformers import LTXVideoTransformer3DModel
|
29 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
30 |
+
from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring
|
31 |
+
from diffusers.utils.torch_utils import randn_tensor
|
32 |
+
from diffusers.video_processor import VideoProcessor
|
33 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
34 |
+
from diffusers.pipelines.ltx.pipeline_output import LTXPipelineOutput
|
35 |
+
from diffusers.models.attention_processor import Attention
|
36 |
+
from diffusers.models.transformers.transformer_ltx import apply_rotary_emb
|
37 |
+
|
38 |
+
import torch.nn.functional as F
|
39 |
+
|
40 |
+
if is_torch_xla_available():
|
41 |
+
import torch_xla.core.xla_model as xm
|
42 |
+
|
43 |
+
XLA_AVAILABLE = True
|
44 |
+
else:
|
45 |
+
XLA_AVAILABLE = False
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
48 |
+
|
49 |
+
def forward_with_stg(
|
50 |
+
self,
|
51 |
+
hidden_states: torch.Tensor,
|
52 |
+
encoder_hidden_states: torch.Tensor,
|
53 |
+
temb: torch.Tensor,
|
54 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
55 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
56 |
+
) -> torch.Tensor:
|
57 |
+
|
58 |
+
hidden_states_ptb = hidden_states[2:]
|
59 |
+
encoder_hidden_states_ptb = encoder_hidden_states[2:]
|
60 |
+
|
61 |
+
batch_size = hidden_states.size(0)
|
62 |
+
norm_hidden_states = self.norm1(hidden_states)
|
63 |
+
|
64 |
+
num_ada_params = self.scale_shift_table.shape[0]
|
65 |
+
ada_values = self.scale_shift_table[None, None] + temb.reshape(batch_size, temb.size(1), num_ada_params, -1)
|
66 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ada_values.unbind(dim=2)
|
67 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
68 |
+
|
69 |
+
attn_hidden_states = self.attn1(
|
70 |
+
hidden_states=norm_hidden_states,
|
71 |
+
encoder_hidden_states=None,
|
72 |
+
image_rotary_emb=image_rotary_emb,
|
73 |
+
)
|
74 |
+
hidden_states = hidden_states + attn_hidden_states * gate_msa
|
75 |
+
|
76 |
+
attn_hidden_states = self.attn2(
|
77 |
+
hidden_states,
|
78 |
+
encoder_hidden_states=encoder_hidden_states,
|
79 |
+
image_rotary_emb=None,
|
80 |
+
attention_mask=encoder_attention_mask,
|
81 |
+
)
|
82 |
+
hidden_states = hidden_states + attn_hidden_states
|
83 |
+
norm_hidden_states = self.norm2(hidden_states) * (1 + scale_mlp) + shift_mlp
|
84 |
+
|
85 |
+
ff_output = self.ff(norm_hidden_states)
|
86 |
+
hidden_states = hidden_states + ff_output * gate_mlp
|
87 |
+
|
88 |
+
hidden_states[2:] = hidden_states_ptb
|
89 |
+
encoder_hidden_states[2:] = encoder_hidden_states_ptb
|
90 |
+
|
91 |
+
return hidden_states
|
92 |
+
|
93 |
+
class STGLTXVideoAttentionProcessor2_0:
|
94 |
+
r"""
|
95 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
|
96 |
+
used in the LTX model. It applies a normalization layer and rotary embedding on the query and key vector.
|
97 |
+
"""
|
98 |
+
|
99 |
+
def __init__(self):
|
100 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
101 |
+
raise ImportError(
|
102 |
+
"LTXVideoAttentionProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
103 |
+
)
|
104 |
+
|
105 |
+
def __call__(
|
106 |
+
self,
|
107 |
+
attn: Attention,
|
108 |
+
hidden_states: torch.Tensor,
|
109 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
110 |
+
attention_mask: Optional[torch.Tensor] = None,
|
111 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
112 |
+
) -> torch.Tensor:
|
113 |
+
|
114 |
+
hidden_states_uncond, hidden_states_text, hidden_states_perturb = hidden_states.chunk(3)
|
115 |
+
hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_text])
|
116 |
+
|
117 |
+
emb_sin, emb_cos = image_rotary_emb
|
118 |
+
emb_sin_uncond, emb_sin_text, emb_sin_perturb = emb_sin.chunk(3)
|
119 |
+
emb_cos_uncond, emb_cos_text, emb_cos_perturb = emb_cos.chunk(3)
|
120 |
+
emb_sin_org = torch.cat([emb_sin_uncond, emb_sin_text])
|
121 |
+
emb_cos_org = torch.cat([emb_cos_uncond, emb_cos_text])
|
122 |
+
|
123 |
+
image_rotary_emb_org = (emb_sin_org, emb_cos_org)
|
124 |
+
image_rotary_emb_perturb = (emb_sin_perturb, emb_cos_perturb)
|
125 |
+
|
126 |
+
#----------------Original Path----------------#
|
127 |
+
assert encoder_hidden_states is None
|
128 |
+
batch_size, sequence_length, _ = (
|
129 |
+
hidden_states_org.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
130 |
+
)
|
131 |
+
|
132 |
+
if attention_mask is not None:
|
133 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
134 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
135 |
+
|
136 |
+
if encoder_hidden_states is None:
|
137 |
+
encoder_hidden_states_org = hidden_states_org
|
138 |
+
|
139 |
+
query_org = attn.to_q(hidden_states_org)
|
140 |
+
key_org = attn.to_k(encoder_hidden_states_org)
|
141 |
+
value_org = attn.to_v(encoder_hidden_states_org)
|
142 |
+
|
143 |
+
query_org = attn.norm_q(query_org)
|
144 |
+
key_org = attn.norm_k(key_org)
|
145 |
+
|
146 |
+
if image_rotary_emb is not None:
|
147 |
+
query_org = apply_rotary_emb(query_org, image_rotary_emb_org)
|
148 |
+
key_org = apply_rotary_emb(key_org, image_rotary_emb_org)
|
149 |
+
|
150 |
+
query_org = query_org.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
151 |
+
key_org = key_org.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
152 |
+
value_org = value_org.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
153 |
+
|
154 |
+
hidden_states_org = F.scaled_dot_product_attention(
|
155 |
+
query_org, key_org, value_org, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
156 |
+
)
|
157 |
+
hidden_states_org = hidden_states_org.transpose(1, 2).flatten(2, 3)
|
158 |
+
hidden_states_org = hidden_states_org.to(query_org.dtype)
|
159 |
+
|
160 |
+
hidden_states_org = attn.to_out[0](hidden_states_org)
|
161 |
+
hidden_states_org = attn.to_out[1](hidden_states_org)
|
162 |
+
#----------------------------------------------#
|
163 |
+
#--------------Perturbation Path---------------#
|
164 |
+
batch_size, sequence_length, _ = hidden_states_perturb.shape
|
165 |
+
|
166 |
+
if attention_mask is not None:
|
167 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
168 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
169 |
+
|
170 |
+
if encoder_hidden_states is None:
|
171 |
+
encoder_hidden_states_perturb = hidden_states_perturb
|
172 |
+
|
173 |
+
query_perturb = attn.to_q(hidden_states_perturb)
|
174 |
+
key_perturb = attn.to_k(encoder_hidden_states_perturb)
|
175 |
+
value_perturb = attn.to_v(encoder_hidden_states_perturb)
|
176 |
+
|
177 |
+
query_perturb = attn.norm_q(query_perturb)
|
178 |
+
key_perturb = attn.norm_k(key_perturb)
|
179 |
+
|
180 |
+
if image_rotary_emb is not None:
|
181 |
+
query_perturb = apply_rotary_emb(query_perturb, image_rotary_emb_perturb)
|
182 |
+
key_perturb = apply_rotary_emb(key_perturb, image_rotary_emb_perturb)
|
183 |
+
|
184 |
+
query_perturb = query_perturb.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
185 |
+
key_perturb = key_perturb.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
186 |
+
value_perturb = value_perturb.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
187 |
+
|
188 |
+
hidden_states_perturb = value_perturb
|
189 |
+
|
190 |
+
hidden_states_perturb = hidden_states_perturb.transpose(1, 2).flatten(2, 3)
|
191 |
+
hidden_states_perturb = hidden_states_perturb.to(query_perturb.dtype)
|
192 |
+
|
193 |
+
hidden_states_perturb = attn.to_out[0](hidden_states_perturb)
|
194 |
+
hidden_states_perturb = attn.to_out[1](hidden_states_perturb)
|
195 |
+
#----------------------------------------------#
|
196 |
+
|
197 |
+
hidden_states = torch.cat([hidden_states_org, hidden_states_perturb], dim=0)
|
198 |
+
|
199 |
+
return hidden_states
|
200 |
+
|
201 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
|
202 |
+
def calculate_shift(
|
203 |
+
image_seq_len,
|
204 |
+
base_seq_len: int = 256,
|
205 |
+
max_seq_len: int = 4096,
|
206 |
+
base_shift: float = 0.5,
|
207 |
+
max_shift: float = 1.16,
|
208 |
+
):
|
209 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
210 |
+
b = base_shift - m * base_seq_len
|
211 |
+
mu = image_seq_len * m + b
|
212 |
+
return mu
|
213 |
+
|
214 |
+
|
215 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
216 |
+
def retrieve_timesteps(
|
217 |
+
scheduler,
|
218 |
+
num_inference_steps: Optional[int] = None,
|
219 |
+
device: Optional[Union[str, torch.device]] = None,
|
220 |
+
timesteps: Optional[List[int]] = None,
|
221 |
+
sigmas: Optional[List[float]] = None,
|
222 |
+
**kwargs,
|
223 |
+
):
|
224 |
+
r"""
|
225 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
226 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
227 |
+
|
228 |
+
Args:
|
229 |
+
scheduler (`SchedulerMixin`):
|
230 |
+
The scheduler to get timesteps from.
|
231 |
+
num_inference_steps (`int`):
|
232 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
233 |
+
must be `None`.
|
234 |
+
device (`str` or `torch.device`, *optional*):
|
235 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
236 |
+
timesteps (`List[int]`, *optional*):
|
237 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
238 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
239 |
+
sigmas (`List[float]`, *optional*):
|
240 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
241 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
242 |
+
|
243 |
+
Returns:
|
244 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
245 |
+
second element is the number of inference steps.
|
246 |
+
"""
|
247 |
+
if timesteps is not None and sigmas is not None:
|
248 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
249 |
+
if timesteps is not None:
|
250 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
251 |
+
if not accepts_timesteps:
|
252 |
+
raise ValueError(
|
253 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
254 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
255 |
+
)
|
256 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
257 |
+
timesteps = scheduler.timesteps
|
258 |
+
num_inference_steps = len(timesteps)
|
259 |
+
elif sigmas is not None:
|
260 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
261 |
+
if not accept_sigmas:
|
262 |
+
raise ValueError(
|
263 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
264 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
265 |
+
)
|
266 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
267 |
+
timesteps = scheduler.timesteps
|
268 |
+
num_inference_steps = len(timesteps)
|
269 |
+
else:
|
270 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
271 |
+
timesteps = scheduler.timesteps
|
272 |
+
return timesteps, num_inference_steps
|
273 |
+
|
274 |
+
|
275 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
276 |
+
def retrieve_latents(
|
277 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
278 |
+
):
|
279 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
280 |
+
return encoder_output.latent_dist.sample(generator)
|
281 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
282 |
+
return encoder_output.latent_dist.mode()
|
283 |
+
elif hasattr(encoder_output, "latents"):
|
284 |
+
return encoder_output.latents
|
285 |
+
else:
|
286 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
287 |
+
|
288 |
+
|
289 |
+
class LTXImageToVideoSTGPipeline(LTXImageToVideoPipeline):
|
290 |
+
def extract_layers(self, file_path="./unet_info.txt"):
|
291 |
+
layers = []
|
292 |
+
with open(file_path, "w") as f:
|
293 |
+
for name, module in self.transformer.named_modules():
|
294 |
+
if "attn1" in name and "to" not in name and "add" not in name and "norm" not in name:
|
295 |
+
f.write(f"{name}\n")
|
296 |
+
layer_type = name.split(".")[0].split("_")[0]
|
297 |
+
layers.append((name, module))
|
298 |
+
|
299 |
+
return layers
|
300 |
+
|
301 |
+
def replace_layer_processor(self, layers, replace_processor, target_layers_idx=[]):
|
302 |
+
for layer_idx in target_layers_idx:
|
303 |
+
layers[layer_idx][1].processor = replace_processor
|
304 |
+
|
305 |
+
return
|
306 |
+
|
307 |
+
@property
|
308 |
+
def do_spatio_temporal_guidance(self):
|
309 |
+
return self._stg_scale > 0.0
|
310 |
+
|
311 |
+
@torch.no_grad()
|
312 |
+
def __call__(
|
313 |
+
self,
|
314 |
+
image: PipelineImageInput = None,
|
315 |
+
prompt: Union[str, List[str]] = None,
|
316 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
317 |
+
height: int = 512,
|
318 |
+
width: int = 704,
|
319 |
+
num_frames: int = 161,
|
320 |
+
frame_rate: int = 25,
|
321 |
+
num_inference_steps: int = 50,
|
322 |
+
timesteps: List[int] = None,
|
323 |
+
guidance_scale: float = 3,
|
324 |
+
num_videos_per_prompt: Optional[int] = 1,
|
325 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
326 |
+
latents: Optional[torch.Tensor] = None,
|
327 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
328 |
+
prompt_attention_mask: Optional[torch.Tensor] = None,
|
329 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
330 |
+
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
331 |
+
output_type: Optional[str] = "pil",
|
332 |
+
return_dict: bool = True,
|
333 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
334 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
335 |
+
max_sequence_length: int = 128,
|
336 |
+
stg_mode: Optional[str] = "STG-R",
|
337 |
+
stg_applied_layers_idx: Optional[List[int]] = [35],
|
338 |
+
stg_scale: Optional[float] = 1.0,
|
339 |
+
do_rescaling: Optional[bool] = False,
|
340 |
+
decode_timestep: Union[float, List[float]] = 0.0,
|
341 |
+
decode_noise_scale: Optional[Union[float, List[float]]] = None,
|
342 |
+
):
|
343 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
344 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
345 |
+
|
346 |
+
layers = self.extract_layers()
|
347 |
+
|
348 |
+
# 1. Check inputs. Raise error if not correct
|
349 |
+
self.check_inputs(
|
350 |
+
prompt=prompt,
|
351 |
+
height=height,
|
352 |
+
width=width,
|
353 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
354 |
+
prompt_embeds=prompt_embeds,
|
355 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
356 |
+
prompt_attention_mask=prompt_attention_mask,
|
357 |
+
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
358 |
+
)
|
359 |
+
|
360 |
+
self._stg_scale = stg_scale
|
361 |
+
self._guidance_scale = guidance_scale
|
362 |
+
self._interrupt = False
|
363 |
+
|
364 |
+
if self.do_spatio_temporal_guidance:
|
365 |
+
if stg_mode == "STG-A":
|
366 |
+
layers = self.extract_layers()
|
367 |
+
replace_processor = STGLTXVideoAttentionProcessor2_0()
|
368 |
+
self.replace_layer_processor(layers, replace_processor, stg_applied_layers_idx)
|
369 |
+
elif stg_mode == "STG-R":
|
370 |
+
for i in stg_applied_layers_idx:
|
371 |
+
self.transformer.transformer_blocks[i].forward = types.MethodType(forward_with_stg, self.transformer.transformer_blocks[i])
|
372 |
+
|
373 |
+
# 2. Define call parameters
|
374 |
+
if prompt is not None and isinstance(prompt, str):
|
375 |
+
batch_size = 1
|
376 |
+
elif prompt is not None and isinstance(prompt, list):
|
377 |
+
batch_size = len(prompt)
|
378 |
+
else:
|
379 |
+
batch_size = prompt_embeds.shape[0]
|
380 |
+
|
381 |
+
device = self._execution_device
|
382 |
+
|
383 |
+
# 3. Prepare text embeddings
|
384 |
+
(
|
385 |
+
prompt_embeds,
|
386 |
+
prompt_attention_mask,
|
387 |
+
negative_prompt_embeds,
|
388 |
+
negative_prompt_attention_mask,
|
389 |
+
) = self.encode_prompt(
|
390 |
+
prompt=prompt,
|
391 |
+
negative_prompt=negative_prompt,
|
392 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
393 |
+
num_videos_per_prompt=num_videos_per_prompt,
|
394 |
+
prompt_embeds=prompt_embeds,
|
395 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
396 |
+
prompt_attention_mask=prompt_attention_mask,
|
397 |
+
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
398 |
+
max_sequence_length=max_sequence_length,
|
399 |
+
device=device,
|
400 |
+
)
|
401 |
+
if self.do_classifier_free_guidance and not self.do_spatio_temporal_guidance:
|
402 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
403 |
+
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
|
404 |
+
elif self.do_classifier_free_guidance and self.do_spatio_temporal_guidance:
|
405 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds, prompt_embeds], dim=0)
|
406 |
+
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask, prompt_attention_mask], dim=0)
|
407 |
+
|
408 |
+
# 4. Prepare latent variables
|
409 |
+
if latents is None:
|
410 |
+
image = self.video_processor.preprocess(image, height=height, width=width)
|
411 |
+
image = image.to(device=device, dtype=prompt_embeds.dtype)
|
412 |
+
|
413 |
+
num_channels_latents = self.transformer.config.in_channels
|
414 |
+
latents, conditioning_mask = self.prepare_latents(
|
415 |
+
image,
|
416 |
+
batch_size * num_videos_per_prompt,
|
417 |
+
num_channels_latents,
|
418 |
+
height,
|
419 |
+
width,
|
420 |
+
num_frames,
|
421 |
+
torch.float32,
|
422 |
+
device,
|
423 |
+
generator,
|
424 |
+
latents,
|
425 |
+
)
|
426 |
+
|
427 |
+
if self.do_classifier_free_guidance and not self.do_spatio_temporal_guidance:
|
428 |
+
conditioning_mask = torch.cat([conditioning_mask, conditioning_mask])
|
429 |
+
elif self.do_classifier_free_guidance and self.do_spatio_temporal_guidance:
|
430 |
+
conditioning_mask = torch.cat([conditioning_mask, conditioning_mask, conditioning_mask])
|
431 |
+
|
432 |
+
# 5. Prepare timesteps
|
433 |
+
latent_num_frames = (num_frames - 1) // self.vae_temporal_compression_ratio + 1
|
434 |
+
latent_height = height // self.vae_spatial_compression_ratio
|
435 |
+
latent_width = width // self.vae_spatial_compression_ratio
|
436 |
+
video_sequence_length = latent_num_frames * latent_height * latent_width
|
437 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
438 |
+
mu = calculate_shift(
|
439 |
+
video_sequence_length,
|
440 |
+
self.scheduler.config.base_image_seq_len,
|
441 |
+
self.scheduler.config.max_image_seq_len,
|
442 |
+
self.scheduler.config.base_shift,
|
443 |
+
self.scheduler.config.max_shift,
|
444 |
+
)
|
445 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
446 |
+
self.scheduler,
|
447 |
+
num_inference_steps,
|
448 |
+
device,
|
449 |
+
timesteps,
|
450 |
+
sigmas=sigmas,
|
451 |
+
mu=mu,
|
452 |
+
)
|
453 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
454 |
+
self._num_timesteps = len(timesteps)
|
455 |
+
|
456 |
+
# 6. Prepare micro-conditions
|
457 |
+
latent_frame_rate = frame_rate / self.vae_temporal_compression_ratio
|
458 |
+
rope_interpolation_scale = (
|
459 |
+
1 / latent_frame_rate,
|
460 |
+
self.vae_spatial_compression_ratio,
|
461 |
+
self.vae_spatial_compression_ratio,
|
462 |
+
)
|
463 |
+
|
464 |
+
# 7. Denoising loop
|
465 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
466 |
+
for i, t in enumerate(timesteps):
|
467 |
+
if self.interrupt:
|
468 |
+
continue
|
469 |
+
|
470 |
+
if self.do_classifier_free_guidance and not self.do_spatio_temporal_guidance:
|
471 |
+
latent_model_input = torch.cat([latents] * 2)
|
472 |
+
elif self.do_classifier_free_guidance and self.do_spatio_temporal_guidance:
|
473 |
+
latent_model_input = torch.cat([latents] * 3)
|
474 |
+
|
475 |
+
latent_model_input = latent_model_input.to(prompt_embeds.dtype)
|
476 |
+
|
477 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
478 |
+
timestep = t.expand(latent_model_input.shape[0])
|
479 |
+
timestep = timestep.unsqueeze(-1) * (1 - conditioning_mask)
|
480 |
+
|
481 |
+
noise_pred = self.transformer(
|
482 |
+
hidden_states=latent_model_input,
|
483 |
+
encoder_hidden_states=prompt_embeds,
|
484 |
+
timestep=timestep,
|
485 |
+
encoder_attention_mask=prompt_attention_mask,
|
486 |
+
num_frames=latent_num_frames,
|
487 |
+
height=latent_height,
|
488 |
+
width=latent_width,
|
489 |
+
rope_interpolation_scale=rope_interpolation_scale,
|
490 |
+
return_dict=False,
|
491 |
+
)[0]
|
492 |
+
noise_pred = noise_pred.float()
|
493 |
+
|
494 |
+
if self.do_classifier_free_guidance and not self.do_spatio_temporal_guidance:
|
495 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
496 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
497 |
+
timestep, _ = timestep.chunk(2)
|
498 |
+
elif self.do_classifier_free_guidance and self.do_spatio_temporal_guidance:
|
499 |
+
noise_pred_uncond, noise_pred_text, noise_pred_perturb = noise_pred.chunk(3)
|
500 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) \
|
501 |
+
+ self._stg_scale * (noise_pred_text - noise_pred_perturb)
|
502 |
+
timestep, _, _ = timestep.chunk(3)
|
503 |
+
|
504 |
+
if do_rescaling:
|
505 |
+
rescaling_scale = 0.7
|
506 |
+
factor = noise_pred_text.std() / noise_pred.std()
|
507 |
+
factor = rescaling_scale * factor + (1 - rescaling_scale)
|
508 |
+
noise_pred = noise_pred * factor
|
509 |
+
|
510 |
+
# compute the previous noisy sample x_t -> x_t-1
|
511 |
+
noise_pred = self._unpack_latents(
|
512 |
+
noise_pred,
|
513 |
+
latent_num_frames,
|
514 |
+
latent_height,
|
515 |
+
latent_width,
|
516 |
+
self.transformer_spatial_patch_size,
|
517 |
+
self.transformer_temporal_patch_size,
|
518 |
+
)
|
519 |
+
latents = self._unpack_latents(
|
520 |
+
latents,
|
521 |
+
latent_num_frames,
|
522 |
+
latent_height,
|
523 |
+
latent_width,
|
524 |
+
self.transformer_spatial_patch_size,
|
525 |
+
self.transformer_temporal_patch_size,
|
526 |
+
)
|
527 |
+
|
528 |
+
noise_pred = noise_pred[:, :, 1:]
|
529 |
+
noise_latents = latents[:, :, 1:]
|
530 |
+
pred_latents = self.scheduler.step(noise_pred, t, noise_latents, return_dict=False)[0]
|
531 |
+
|
532 |
+
latents = torch.cat([latents[:, :, :1], pred_latents], dim=2)
|
533 |
+
latents = self._pack_latents(
|
534 |
+
latents, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size
|
535 |
+
)
|
536 |
+
|
537 |
+
if callback_on_step_end is not None:
|
538 |
+
callback_kwargs = {}
|
539 |
+
for k in callback_on_step_end_tensor_inputs:
|
540 |
+
callback_kwargs[k] = locals()[k]
|
541 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
542 |
+
|
543 |
+
latents = callback_outputs.pop("latents", latents)
|
544 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
545 |
+
|
546 |
+
# call the callback, if provided
|
547 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
548 |
+
progress_bar.update()
|
549 |
+
|
550 |
+
if XLA_AVAILABLE:
|
551 |
+
xm.mark_step()
|
552 |
+
|
553 |
+
if output_type == "latent":
|
554 |
+
video = latents
|
555 |
+
else:
|
556 |
+
latents = self._unpack_latents(
|
557 |
+
latents,
|
558 |
+
latent_num_frames,
|
559 |
+
latent_height,
|
560 |
+
latent_width,
|
561 |
+
self.transformer_spatial_patch_size,
|
562 |
+
self.transformer_temporal_patch_size,
|
563 |
+
)
|
564 |
+
latents = self._denormalize_latents(
|
565 |
+
latents, self.vae.latents_mean, self.vae.latents_std, self.vae.config.scaling_factor
|
566 |
+
)
|
567 |
+
latents = latents.to(prompt_embeds.dtype)
|
568 |
+
|
569 |
+
if not self.vae.config.timestep_conditioning:
|
570 |
+
timestep = None
|
571 |
+
else:
|
572 |
+
noise = torch.randn(latents.shape, generator=generator, device=device, dtype=latents.dtype)
|
573 |
+
if not isinstance(decode_timestep, list):
|
574 |
+
decode_timestep = [decode_timestep] * batch_size
|
575 |
+
if decode_noise_scale is None:
|
576 |
+
decode_noise_scale = decode_timestep
|
577 |
+
elif not isinstance(decode_noise_scale, list):
|
578 |
+
decode_noise_scale = [decode_noise_scale] * batch_size
|
579 |
+
|
580 |
+
timestep = torch.tensor(decode_timestep, device=device, dtype=latents.dtype)
|
581 |
+
decode_noise_scale = torch.tensor(decode_noise_scale, device=device, dtype=latents.dtype)[
|
582 |
+
:, None, None, None, None
|
583 |
+
]
|
584 |
+
latents = (1 - decode_noise_scale) * latents + decode_noise_scale * noise
|
585 |
+
|
586 |
+
video = self.vae.decode(latents, timestep, return_dict=False)[0]
|
587 |
+
video = self.video_processor.postprocess_video(video, output_type=output_type)
|
588 |
+
|
589 |
+
# Offload all models
|
590 |
+
self.maybe_free_model_hooks()
|
591 |
+
|
592 |
+
if not return_dict:
|
593 |
+
return (video,)
|
594 |
+
|
595 |
+
return LTXPipelineOutput(frames=video)
|