Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 280.24 +/- 15.96
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79933cd581f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79933cd58280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79933cd58310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79933cd583a0>", "_build": "<function ActorCriticPolicy._build at 0x79933cd58430>", "forward": "<function ActorCriticPolicy.forward at 0x79933cd584c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79933cd58550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79933cd585e0>", "_predict": "<function ActorCriticPolicy._predict at 0x79933cd58670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79933cd58700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79933cd58790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79933cd58820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79933cd52680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691109068029396769, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADO9LD1cHz66vvM7vIW8CrG8KaM7Rqe/swAAgD8AAIA/mo7SvfxRtj8Zgh2/3cwWvkCxLr3D/6a+AAAAAAAAAAAai+I9Gd2mP/Z0wT6kGwW/SC5bPl72pD4AAAAAAAAAADp8Iz6brIQ+FVRAvocjEr+TCIo+ABv+vQAAAAAAAAAAM1OjOsN1VTneZ/Y7LuPFPAO2dbvKVYy9AACAPwAAgD8z0wM9ww0funfIHDwEvnsyXekmO7au/jMAAIA/AACAP9r2Gz4kWnA/Ju+3Pv9TW7+OOqA+L7G0PQAAAAAAAAAAGiUBPVKkxrtlQs27F1qsPPosIz1ShJC9AACAPwAAgD9zkYG9Kfx0uhEaHzsVkh224n4su2bmGLUAAIA/AACAP2aTWb3TTKM+0XmmPJWHIb8UpvK9uFYCPQAAAAAAAAAAZvUWvZRcsztjAVS9UkGPvl15oL3iBrm9AACAPwAAAACa2SS8SD+BuoLuzrOk+bUuqc4AOmczqDMAAIA/AACAP82FkL3sWZy7wZYxPhLMVT0tZ0G9SyTZPQAAAAAAAAAAmujwvI9qQrqHdLc9pN0Wsyinh7sSyQyzAACAPwAAgD8a/Ci9Ylu1P+r4X751clm+PA+cvLW7cL0AAAAAAAAAAOYsUT06u7w/fWT7Pv+4Jj4JKZc8qN/dPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHSYjSofjmMAWyUS66MAXSUR0CyUCor4FibdX2UKGgGR0BxyEq7ROUMaAdLimgIR0CyUDaoddVvdX2UKGgGR0Bzq5fmcOLBaAdLuGgIR0CyUDZrYXfqdX2UKGgGR0ByfZ3yI55raAdLh2gIR0CyUEzR6WxAdX2UKGgGR0BwEu/tY0VKaAdLpmgIR0CyUFnGwRoRdX2UKGgGR0ByoNHmRvFWaAdLs2gIR0CyUFyad+XrdX2UKGgGR0BxXl2Qnx8VaAdLsGgIR0CyUGxUvPC3dX2UKGgGR0BvTBFkQPI5aAdLl2gIR0CyUHGYSg5BdX2UKGgGR0Bw47gVGkN4aAdLsWgIR0CyUKV/2Cd0dX2UKGgGR0BzqC15Sm65aAdLwGgIR0CyUNchLXcydX2UKGgGR0BzeKFUQ04zaAdL0WgIR0CyUPN/z8P4dX2UKGgGR0Bz2CaJAMUiaAdLn2gIR0CyURChrWRSdX2UKGgGR0B0A1iZv1lHaAdLz2gIR0CyUTQBtDUmdX2UKGgGR0B0LMep4rz5aAdLyGgIR0CyUThvaURndX2UKGgGR0ByiuI0qH45aAdLu2gIR0CyUUSpWFN+dX2UKGgGR0Bzr0c+7lJZaAdL0GgIR0CyUWBiG34LdX2UKGgGR0ByGf212JSBaAdLnWgIR0CyUXGTTvy9dX2UKGgGR0BzAJJCjUNKaAdLp2gIR0CyUXdX1anrdX2UKGgGR0BwTe+10DEFaAdLmWgIR0CyUad5t3wDdX2UKGgGR0By+uRmseXBaAdLvmgIR0CyUa2YWtU5dX2UKGgGR0ByaCKIi1RcaAdLkWgIR0CyUcN/WlMzdX2UKGgGR0BzKrO7g88taAdLwmgIR0CyUc3Zbpu/dX2UKGgGR0B0ELUaya/iaAdLymgIR0CyUddJrcj8dX2UKGgGR0BzLvU7Sy+paAdLwWgIR0CyUdjm8ujAdX2UKGgGR0BzyH3j+717aAdL2GgIR0CyUd/l2eQNdX2UKGgGR0BxhetcOby6aAdLqGgIR0CyUfrSRbKSdX2UKGgGR0BxEoJdB0IUaAdLkWgIR0CyUgA0sOG1dX2UKGgGR0BxUOwwCbMHaAdLqWgIR0CyUgyUHIIXdX2UKGgGR0BwAOnqFAVxaAdLk2gIR0CyUhcQumJndX2UKGgGR0Byc2UOd5IIaAdLgWgIR0CyUiHkLhJidX2UKGgGR0Bx1zBJqZc+aAdLqmgIR0CyUi/nW8RMdX2UKGgGR0BwSx+/gzguaAdLn2gIR0CyUjvvfCQ+dX2UKGgGR0By79AX2ugZaAdLtmgIR0CyUkjQ/oq1dX2UKGgGR0BxTGpsGgSOaAdLlWgIR0CyUl59NN8FdX2UKGgGR0By1JEiMYMwaAdLxGgIR0CyUnrOmixndX2UKGgGR0ByENi9Zid8aAdLkWgIR0CyUokDMeOodX2UKGgGR0BzD7jbSJCTaAdLtWgIR0CyUo6Ieo1ldX2UKGgGR0Bx6VGc4HX3aAdLsGgIR0CyUp5Fw1iwdX2UKGgGR0ByVchGH58CaAdLnWgIR0CyUqJvkzXSdX2UKGgGR0BwTrkxREWqaAdLpWgIR0CyUqVWn0kGdX2UKGgGR0B0TlAs052haAdLwGgIR0CyUry5VfeDdX2UKGgGR0ByUs3eenQ6aAdLp2gIR0CyUs6/ub7TdX2UKGgGR0BzRXc2zfJnaAdLqmgIR0CyUuYaxX4kdX2UKGgGR0BxVSLEUCaJaAdLi2gIR0CyUuRhpg1FdX2UKGgGR0BwXTivPkaNaAdLuWgIR0CyUuvyoXKsdX2UKGgGR0Bykq8SPEKmaAdLrWgIR0CyUvSFbmlqdX2UKGgGR0ByZgBMi8nNaAdLimgIR0CyUw72xptadX2UKGgGR0BzJUtpVS4waAdLxmgIR0CyUx/fCQ9zdX2UKGgGR0Bx7M+EAYHgaAdLkWgIR0CyU0KHj6vadX2UKGgGR0Bw7rEcbR4RaAdLoGgIR0CyU0hjJ+2FdX2UKGgGR0Bz+Qnw5NoKaAdLymgIR0CyU0ztTkyUdX2UKGgGR0BzcoY0l7dBaAdL1mgIR0CyU0+JYT0ydX2UKGgGR0BykmeDnNgSaAdLmGgIR0CyU1++IuXedX2UKGgGR0ByBqAWi1zAaAdLq2gIR0CyU2bjtG/fdX2UKGgGR0BzRNiZv1lHaAdLp2gIR0CyU3MEq2BrdX2UKGgGR0BzHNNJvo/zaAdLmGgIR0CyU3it7rs0dX2UKGgGR0BvXugWac7RaAdLlWgIR0CyU4RkiD/VdX2UKGgGR0BxRRPRArxzaAdLjGgIR0CyU4zkMkQgdX2UKGgGR0Bx44TBZZB+aAdLwmgIR0CyU5J8F6iTdX2UKGgGR0Bw2XnNgSezaAdLh2gIR0CyU5VtbcGkdX2UKGgGR0Bx8olF+d9VaAdLomgIR0CyU6dl2/zrdX2UKGgGR0Bzc7UkOZssaAdLsGgIR0CyU70nw5NodX2UKGgGR0Byi0GB4D9waAdLkmgIR0CyU8q19fCzdX2UKGgGR0BxOv7IkqtpaAdLyWgIR0CyVACTUy57dX2UKGgGR0BxqG/IsAeaaAdLoGgIR0CyVAR8pkPMdX2UKGgGR0Bwo+OEM9bHaAdLnmgIR0CyVAjCxeLOdX2UKGgGR0BynvNJOFg2aAdLgWgIR0CyVAuOfdyldX2UKGgGR0Bx3KMm4RVZaAdLs2gIR0CyVBfpljEvdX2UKGgGR0BAxLBTGYKIaAdLXmgIR0CyVB7bQC0XdX2UKGgGR0BzppmyxA0LaAdLu2gIR0CyVC9R3u/ldX2UKGgGR0ByciKGcnVoaAdLmWgIR0CyVDTyBkI5dX2UKGgGR0BzjnHEMspYaAdLtWgIR0CyVDp00WM1dX2UKGgGR0Bx650+1SflaAdLsWgIR0CyVD1KCg9NdX2UKGgGR0BxazBi1AqvaAdLomgIR0CyVEsuWa+fdX2UKGgGR0BxRMX/HYHxaAdLn2gIR0CyVFBoRIz4dX2UKGgGR0BxsqbUgB91aAdLpGgIR0CyVFyWRigCdX2UKGgGR0BwsokfLcKxaAdLqWgIR0CyVGWO2iL3dX2UKGgGR0ByeZxZMcp9aAdLp2gIR0CyVIwGOdXldX2UKGgGR0ByJwPvrnklaAdLt2gIR0CyVK1CHARDdX2UKGgGR0Bwu9q59Vm0aAdLl2gIR0CyVMI4ACGOdX2UKGgGR0BzE8KfFrEcaAdLoWgIR0CyVOGQr+YMdX2UKGgGR0B0ZvSjQAuJaAdLrGgIR0CyVOq814xDdX2UKGgGR0By72EM9bHIaAdLwWgIR0CyVO8zMzMzdX2UKGgGR0ByymX7cfvGaAdLwGgIR0CyVPHZ9NN8dX2UKGgGR0Bygc9Pk7wKaAdLomgIR0CyVPeyVv/BdX2UKGgGR0ByOus7uDzzaAdLpGgIR0CyVP9O/L1VdX2UKGgGR0ByO0F9roGIaAdLxWgIR0CyVP3w1BMSdX2UKGgGR0Bxftn3+MqCaAdLqmgIR0CyVQhzBAObdX2UKGgGR0By3cI1LrX2aAdLt2gIR0CyVQmJm/WUdX2UKGgGR0BxmkOOKfnPaAdLi2gIR0CyVQ08A7xNdX2UKGgGR0BxG0xk/bCaaAdLpGgIR0CyVRAb+98JdX2UKGgGR0Bx9NW8yvcKaAdLqGgIR0CyVST987ZGdX2UKGgGR0BzAKR5kbxWaAdLy2gIR0CyVUN2cJ+ldX2UKGgGR0Bw3NIUahpQaAdLq2gIR0CyVVrHQyAQdX2UKGgGR0Bw5YMKCxu9aAdLnWgIR0CyVWqg/TsqdX2UKGgGR0BwWqb2Dg62aAdLp2gIR0CyVY0GZ/kOdX2UKGgGR0BxUuswL3K0aAdLl2gIR0CyVZkUj9n9dX2UKGgGR0Bxz6N6w+t9aAdLi2gIR0CyVaEhJRO2dX2UKGgGR0Bz6QFiay8jaAdLm2gIR0CyVag6U7jldX2UKGgGR0BwkeMVDa4+aAdLmmgIR0CyVaupGWledWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1472, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.995, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 16, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35af6e03dd2bcde5869f9ee85a36e6b310e6b0283787ad700809f5e8fd7ae2be
|
3 |
+
size 146624
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x79933cd581f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79933cd58280>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79933cd58310>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79933cd583a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x79933cd58430>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x79933cd584c0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x79933cd58550>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79933cd585e0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x79933cd58670>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79933cd58700>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79933cd58790>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x79933cd58820>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x79933cd52680>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 3014656,
|
25 |
+
"_total_timesteps": 3000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1691109068029396769,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADO9LD1cHz66vvM7vIW8CrG8KaM7Rqe/swAAgD8AAIA/mo7SvfxRtj8Zgh2/3cwWvkCxLr3D/6a+AAAAAAAAAAAai+I9Gd2mP/Z0wT6kGwW/SC5bPl72pD4AAAAAAAAAADp8Iz6brIQ+FVRAvocjEr+TCIo+ABv+vQAAAAAAAAAAM1OjOsN1VTneZ/Y7LuPFPAO2dbvKVYy9AACAPwAAgD8z0wM9ww0funfIHDwEvnsyXekmO7au/jMAAIA/AACAP9r2Gz4kWnA/Ju+3Pv9TW7+OOqA+L7G0PQAAAAAAAAAAGiUBPVKkxrtlQs27F1qsPPosIz1ShJC9AACAPwAAgD9zkYG9Kfx0uhEaHzsVkh224n4su2bmGLUAAIA/AACAP2aTWb3TTKM+0XmmPJWHIb8UpvK9uFYCPQAAAAAAAAAAZvUWvZRcsztjAVS9UkGPvl15oL3iBrm9AACAPwAAAACa2SS8SD+BuoLuzrOk+bUuqc4AOmczqDMAAIA/AACAP82FkL3sWZy7wZYxPhLMVT0tZ0G9SyTZPQAAAAAAAAAAmujwvI9qQrqHdLc9pN0Wsyinh7sSyQyzAACAPwAAgD8a/Ci9Ylu1P+r4X751clm+PA+cvLW7cL0AAAAAAAAAAOYsUT06u7w/fWT7Pv+4Jj4JKZc8qN/dPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.004885333333333408,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHSYjSofjmMAWyUS66MAXSUR0CyUCor4FibdX2UKGgGR0BxyEq7ROUMaAdLimgIR0CyUDaoddVvdX2UKGgGR0Bzq5fmcOLBaAdLuGgIR0CyUDZrYXfqdX2UKGgGR0ByfZ3yI55raAdLh2gIR0CyUEzR6WxAdX2UKGgGR0BwEu/tY0VKaAdLpmgIR0CyUFnGwRoRdX2UKGgGR0ByoNHmRvFWaAdLs2gIR0CyUFyad+XrdX2UKGgGR0BxXl2Qnx8VaAdLsGgIR0CyUGxUvPC3dX2UKGgGR0BvTBFkQPI5aAdLl2gIR0CyUHGYSg5BdX2UKGgGR0Bw47gVGkN4aAdLsWgIR0CyUKV/2Cd0dX2UKGgGR0BzqC15Sm65aAdLwGgIR0CyUNchLXcydX2UKGgGR0BzeKFUQ04zaAdL0WgIR0CyUPN/z8P4dX2UKGgGR0Bz2CaJAMUiaAdLn2gIR0CyURChrWRSdX2UKGgGR0B0A1iZv1lHaAdLz2gIR0CyUTQBtDUmdX2UKGgGR0B0LMep4rz5aAdLyGgIR0CyUThvaURndX2UKGgGR0ByiuI0qH45aAdLu2gIR0CyUUSpWFN+dX2UKGgGR0Bzr0c+7lJZaAdL0GgIR0CyUWBiG34LdX2UKGgGR0ByGf212JSBaAdLnWgIR0CyUXGTTvy9dX2UKGgGR0BzAJJCjUNKaAdLp2gIR0CyUXdX1anrdX2UKGgGR0BwTe+10DEFaAdLmWgIR0CyUad5t3wDdX2UKGgGR0By+uRmseXBaAdLvmgIR0CyUa2YWtU5dX2UKGgGR0ByaCKIi1RcaAdLkWgIR0CyUcN/WlMzdX2UKGgGR0BzKrO7g88taAdLwmgIR0CyUc3Zbpu/dX2UKGgGR0B0ELUaya/iaAdLymgIR0CyUddJrcj8dX2UKGgGR0BzLvU7Sy+paAdLwWgIR0CyUdjm8ujAdX2UKGgGR0BzyH3j+717aAdL2GgIR0CyUd/l2eQNdX2UKGgGR0BxhetcOby6aAdLqGgIR0CyUfrSRbKSdX2UKGgGR0BxEoJdB0IUaAdLkWgIR0CyUgA0sOG1dX2UKGgGR0BxUOwwCbMHaAdLqWgIR0CyUgyUHIIXdX2UKGgGR0BwAOnqFAVxaAdLk2gIR0CyUhcQumJndX2UKGgGR0Byc2UOd5IIaAdLgWgIR0CyUiHkLhJidX2UKGgGR0Bx1zBJqZc+aAdLqmgIR0CyUi/nW8RMdX2UKGgGR0BwSx+/gzguaAdLn2gIR0CyUjvvfCQ+dX2UKGgGR0By79AX2ugZaAdLtmgIR0CyUkjQ/oq1dX2UKGgGR0BxTGpsGgSOaAdLlWgIR0CyUl59NN8FdX2UKGgGR0By1JEiMYMwaAdLxGgIR0CyUnrOmixndX2UKGgGR0ByENi9Zid8aAdLkWgIR0CyUokDMeOodX2UKGgGR0BzD7jbSJCTaAdLtWgIR0CyUo6Ieo1ldX2UKGgGR0Bx6VGc4HX3aAdLsGgIR0CyUp5Fw1iwdX2UKGgGR0ByVchGH58CaAdLnWgIR0CyUqJvkzXSdX2UKGgGR0BwTrkxREWqaAdLpWgIR0CyUqVWn0kGdX2UKGgGR0B0TlAs052haAdLwGgIR0CyUry5VfeDdX2UKGgGR0ByUs3eenQ6aAdLp2gIR0CyUs6/ub7TdX2UKGgGR0BzRXc2zfJnaAdLqmgIR0CyUuYaxX4kdX2UKGgGR0BxVSLEUCaJaAdLi2gIR0CyUuRhpg1FdX2UKGgGR0BwXTivPkaNaAdLuWgIR0CyUuvyoXKsdX2UKGgGR0Bykq8SPEKmaAdLrWgIR0CyUvSFbmlqdX2UKGgGR0ByZgBMi8nNaAdLimgIR0CyUw72xptadX2UKGgGR0BzJUtpVS4waAdLxmgIR0CyUx/fCQ9zdX2UKGgGR0Bx7M+EAYHgaAdLkWgIR0CyU0KHj6vadX2UKGgGR0Bw7rEcbR4RaAdLoGgIR0CyU0hjJ+2FdX2UKGgGR0Bz+Qnw5NoKaAdLymgIR0CyU0ztTkyUdX2UKGgGR0BzcoY0l7dBaAdL1mgIR0CyU0+JYT0ydX2UKGgGR0BykmeDnNgSaAdLmGgIR0CyU1++IuXedX2UKGgGR0ByBqAWi1zAaAdLq2gIR0CyU2bjtG/fdX2UKGgGR0BzRNiZv1lHaAdLp2gIR0CyU3MEq2BrdX2UKGgGR0BzHNNJvo/zaAdLmGgIR0CyU3it7rs0dX2UKGgGR0BvXugWac7RaAdLlWgIR0CyU4RkiD/VdX2UKGgGR0BxRRPRArxzaAdLjGgIR0CyU4zkMkQgdX2UKGgGR0Bx44TBZZB+aAdLwmgIR0CyU5J8F6iTdX2UKGgGR0Bw2XnNgSezaAdLh2gIR0CyU5VtbcGkdX2UKGgGR0Bx8olF+d9VaAdLomgIR0CyU6dl2/zrdX2UKGgGR0Bzc7UkOZssaAdLsGgIR0CyU70nw5NodX2UKGgGR0Byi0GB4D9waAdLkmgIR0CyU8q19fCzdX2UKGgGR0BxOv7IkqtpaAdLyWgIR0CyVACTUy57dX2UKGgGR0BxqG/IsAeaaAdLoGgIR0CyVAR8pkPMdX2UKGgGR0Bwo+OEM9bHaAdLnmgIR0CyVAjCxeLOdX2UKGgGR0BynvNJOFg2aAdLgWgIR0CyVAuOfdyldX2UKGgGR0Bx3KMm4RVZaAdLs2gIR0CyVBfpljEvdX2UKGgGR0BAxLBTGYKIaAdLXmgIR0CyVB7bQC0XdX2UKGgGR0BzppmyxA0LaAdLu2gIR0CyVC9R3u/ldX2UKGgGR0ByciKGcnVoaAdLmWgIR0CyVDTyBkI5dX2UKGgGR0BzjnHEMspYaAdLtWgIR0CyVDp00WM1dX2UKGgGR0Bx650+1SflaAdLsWgIR0CyVD1KCg9NdX2UKGgGR0BxazBi1AqvaAdLomgIR0CyVEsuWa+fdX2UKGgGR0BxRMX/HYHxaAdLn2gIR0CyVFBoRIz4dX2UKGgGR0BxsqbUgB91aAdLpGgIR0CyVFyWRigCdX2UKGgGR0BwsokfLcKxaAdLqWgIR0CyVGWO2iL3dX2UKGgGR0ByeZxZMcp9aAdLp2gIR0CyVIwGOdXldX2UKGgGR0ByJwPvrnklaAdLt2gIR0CyVK1CHARDdX2UKGgGR0Bwu9q59Vm0aAdLl2gIR0CyVMI4ACGOdX2UKGgGR0BzE8KfFrEcaAdLoWgIR0CyVOGQr+YMdX2UKGgGR0B0ZvSjQAuJaAdLrGgIR0CyVOq814xDdX2UKGgGR0By72EM9bHIaAdLwWgIR0CyVO8zMzMzdX2UKGgGR0ByymX7cfvGaAdLwGgIR0CyVPHZ9NN8dX2UKGgGR0Bygc9Pk7wKaAdLomgIR0CyVPeyVv/BdX2UKGgGR0ByOus7uDzzaAdLpGgIR0CyVP9O/L1VdX2UKGgGR0ByO0F9roGIaAdLxWgIR0CyVP3w1BMSdX2UKGgGR0Bxftn3+MqCaAdLqmgIR0CyVQhzBAObdX2UKGgGR0By3cI1LrX2aAdLt2gIR0CyVQmJm/WUdX2UKGgGR0BxmkOOKfnPaAdLi2gIR0CyVQ08A7xNdX2UKGgGR0BxG0xk/bCaaAdLpGgIR0CyVRAb+98JdX2UKGgGR0Bx9NW8yvcKaAdLqGgIR0CyVST987ZGdX2UKGgGR0BzAKR5kbxWaAdLy2gIR0CyVUN2cJ+ldX2UKGgGR0Bw3NIUahpQaAdLq2gIR0CyVVrHQyAQdX2UKGgGR0Bw5YMKCxu9aAdLnWgIR0CyVWqg/TsqdX2UKGgGR0BwWqb2Dg62aAdLp2gIR0CyVY0GZ/kOdX2UKGgGR0BxUuswL3K0aAdLl2gIR0CyVZkUj9n9dX2UKGgGR0Bxz6N6w+t9aAdLi2gIR0CyVaEhJRO2dX2UKGgGR0Bz6QFiay8jaAdLm2gIR0CyVag6U7jldX2UKGgGR0BwkeMVDa4+aAdLmmgIR0CyVaupGWledWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 1472,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.995,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 16,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d882de81a4559cb96430ca556a2eaefd614e74a52e47cdbf4b106e098a1f7f0a
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2cf14ea9328c3af9476c50000d5f903913c63c9f07e07da3c2835b67051549f0
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (156 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 280.2361285110866, "std_reward": 15.962602846167705, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-04T02:11:48.480542"}
|