After logging in on your machine, you can download the checkpoints: ``` from huggingface_hub import hf_hub_download REPO_ID = "micromind/ImageNet" FILENAME = "v5/state_dict.pth.tar" model_path = hf_hub_download(repo_id=REPO_ID, filename=FILENAME) ``` followed by: ``` model = PhiNet( input_shape=(3, 224, 224), alpha=..., num_layers=..., beta=..., t_zero=..., include_top=True, num_classes=1000, compatibility=False, divisor=8, downsampling_layers=[4,5,7] ) model.load_state_dict(torch.load(model_path)) ``` *Note* for v1, when initializing the network, use: ``` downsampling_layers=[5,7] ``` Performance: | Model name | Acc@1 | Acc@5 | |------------|-------|-------| | v1 | 71.18% | 89.65% | | v2 | 65.21% | 85.82% | | v3 | 64.69% | 86.15% | | v5 | 67.99% | 87.53% | | v6 | 61.86% | 83.44% | | v7 | 53.66% | 77.13% |