kendallpark
commited on
Add @dataclass decorator to CXRBertOutput
Browse filesShould fix https://github.com/huggingface/transformers/issues/30412
(Someone logged this bug on the huggingface/transformer's repo as opposed to microsoft/hi-ml.)
The file uploaded is the `main` version of: https://github.com/microsoft/hi-ml/blame/main/hi-ml-multimodal/src/health_multimodal/text/model/modelling_cxrbert.py
- modelling_cxrbert.py +146 -0
modelling_cxrbert.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------------
|
2 |
+
# Copyright (c) Microsoft Corporation. All rights reserved.
|
3 |
+
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
|
4 |
+
# ------------------------------------------------------------------------------------------
|
5 |
+
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from typing import Any, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from torch import nn
|
12 |
+
from torch import Tensor as T
|
13 |
+
from transformers import BertForMaskedLM
|
14 |
+
from transformers.modeling_outputs import ModelOutput
|
15 |
+
|
16 |
+
from health_multimodal.text.model.configuration_cxrbert import CXRBertConfig
|
17 |
+
|
18 |
+
BERTTupleOutput = Tuple[T, T, T, T, T]
|
19 |
+
|
20 |
+
|
21 |
+
@dataclass
|
22 |
+
class CXRBertOutput(ModelOutput):
|
23 |
+
last_hidden_state: torch.FloatTensor
|
24 |
+
logits: Optional[torch.FloatTensor] = None
|
25 |
+
cls_projected_embedding: Optional[torch.FloatTensor] = None
|
26 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
27 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
28 |
+
|
29 |
+
|
30 |
+
class BertProjectionHead(nn.Module):
|
31 |
+
"""Projection head to be used with BERT CLS token.
|
32 |
+
|
33 |
+
This is similar to ``BertPredictionHeadTransform`` in HuggingFace.
|
34 |
+
|
35 |
+
:param config: Configuration for BERT.
|
36 |
+
"""
|
37 |
+
|
38 |
+
def __init__(self, config: CXRBertConfig) -> None:
|
39 |
+
super().__init__()
|
40 |
+
self.dense_to_hidden = nn.Linear(config.hidden_size, config.projection_size)
|
41 |
+
self.transform_act_fn = nn.functional.gelu
|
42 |
+
self.LayerNorm = nn.LayerNorm(config.projection_size, eps=1e-12)
|
43 |
+
self.dense_to_output = nn.Linear(config.projection_size, config.projection_size)
|
44 |
+
|
45 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
46 |
+
hidden_states = self.dense_to_hidden(hidden_states)
|
47 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
48 |
+
hidden_states = self.LayerNorm(hidden_states)
|
49 |
+
hidden_states = self.dense_to_output(hidden_states)
|
50 |
+
|
51 |
+
return hidden_states
|
52 |
+
|
53 |
+
|
54 |
+
class CXRBertModel(BertForMaskedLM):
|
55 |
+
"""
|
56 |
+
Implements the CXR-BERT model outlined in the manuscript:
|
57 |
+
Boecking et al. "Making the Most of Text Semantics to Improve Biomedical Vision-Language Processing", 2022
|
58 |
+
https://link.springer.com/chapter/10.1007/978-3-031-20059-5_1
|
59 |
+
|
60 |
+
Extends the HuggingFace BertForMaskedLM model by adding a separate projection head. The projection "[CLS]" token is
|
61 |
+
used to align the latent vectors of image and text modalities.
|
62 |
+
"""
|
63 |
+
|
64 |
+
config_class = CXRBertConfig # type: ignore
|
65 |
+
|
66 |
+
def __init__(self, config: CXRBertConfig):
|
67 |
+
super().__init__(config)
|
68 |
+
|
69 |
+
self.cls_projection_head = BertProjectionHead(config)
|
70 |
+
self.init_weights()
|
71 |
+
|
72 |
+
def forward(
|
73 |
+
self,
|
74 |
+
input_ids: torch.Tensor,
|
75 |
+
attention_mask: torch.Tensor,
|
76 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
77 |
+
position_ids: Optional[torch.Tensor] = None,
|
78 |
+
head_mask: Optional[torch.Tensor] = None,
|
79 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
80 |
+
output_attentions: Optional[bool] = None,
|
81 |
+
output_hidden_states: Optional[bool] = None,
|
82 |
+
output_cls_projected_embedding: Optional[bool] = None,
|
83 |
+
return_dict: Optional[bool] = None,
|
84 |
+
**kwargs: Any
|
85 |
+
) -> Union[BERTTupleOutput, CXRBertOutput]:
|
86 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
87 |
+
|
88 |
+
bert_for_masked_lm_output = super().forward(
|
89 |
+
input_ids=input_ids,
|
90 |
+
attention_mask=attention_mask,
|
91 |
+
token_type_ids=token_type_ids,
|
92 |
+
position_ids=position_ids,
|
93 |
+
head_mask=head_mask,
|
94 |
+
inputs_embeds=inputs_embeds,
|
95 |
+
output_attentions=output_attentions,
|
96 |
+
output_hidden_states=True,
|
97 |
+
return_dict=True,
|
98 |
+
)
|
99 |
+
|
100 |
+
last_hidden_state = bert_for_masked_lm_output.hidden_states[-1]
|
101 |
+
cls_projected_embedding = (
|
102 |
+
self.cls_projection_head(last_hidden_state[:, 0, :]) if output_cls_projected_embedding else None
|
103 |
+
)
|
104 |
+
|
105 |
+
if return_dict:
|
106 |
+
return CXRBertOutput(
|
107 |
+
last_hidden_state=last_hidden_state,
|
108 |
+
logits=bert_for_masked_lm_output.logits,
|
109 |
+
cls_projected_embedding=cls_projected_embedding,
|
110 |
+
hidden_states=bert_for_masked_lm_output.hidden_states if output_hidden_states else None,
|
111 |
+
attentions=bert_for_masked_lm_output.attentions,
|
112 |
+
)
|
113 |
+
else:
|
114 |
+
return (
|
115 |
+
last_hidden_state,
|
116 |
+
bert_for_masked_lm_output.logits,
|
117 |
+
cls_projected_embedding,
|
118 |
+
bert_for_masked_lm_output.hidden_states,
|
119 |
+
bert_for_masked_lm_output.attentions,
|
120 |
+
)
|
121 |
+
|
122 |
+
def get_projected_text_embeddings(
|
123 |
+
self, input_ids: torch.Tensor, attention_mask: torch.Tensor, normalize_embeddings: bool = True
|
124 |
+
) -> torch.Tensor:
|
125 |
+
"""
|
126 |
+
Returns l2-normalised projected cls token embeddings for the given input token ids and attention mask.
|
127 |
+
The joint latent space is trained using a contrastive objective between image and text data modalities.
|
128 |
+
|
129 |
+
:param input_ids: (batch_size, sequence_length)
|
130 |
+
:param attention_mask: (batch_size, sequence_length)
|
131 |
+
:param normalize_embeddings: Whether to l2-normalise the embeddings.
|
132 |
+
:return: (batch_size, projection_size)
|
133 |
+
"""
|
134 |
+
|
135 |
+
outputs = self.forward(
|
136 |
+
input_ids=input_ids, attention_mask=attention_mask, output_cls_projected_embedding=True, return_dict=True
|
137 |
+
)
|
138 |
+
assert isinstance(outputs, CXRBertOutput)
|
139 |
+
|
140 |
+
cls_projected_embedding = outputs.cls_projected_embedding
|
141 |
+
assert cls_projected_embedding is not None
|
142 |
+
|
143 |
+
if normalize_embeddings:
|
144 |
+
return F.normalize(cls_projected_embedding, dim=1)
|
145 |
+
|
146 |
+
return cls_projected_embedding
|