File size: 6,852 Bytes
b9ba42c
 
 
 
 
 
 
 
 
 
 
ad7221a
b9ba42c
 
 
 
 
 
 
4ff02f9
 
b9ba42c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
643a8dc
b9ba42c
 
 
 
 
 
 
643a8dc
b9ba42c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d340fee
b9ba42c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
654948b
 
 
 
 
b9ba42c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
base_model:
- Qwen/Qwen2.5-VL-3B-Instruct
license: mit
library_name: transformers
pipeline_tag: image-text-to-text
---

# GUI-Actor-7B with Qwen2.5-VL-7B as backbone VLM

This model was introduced in the paper [**GUI-Actor: Coordinate-Free Visual Grounding for GUI Agents**](https://huggingface.co/papers/2506.03143).
It is developed based on [Qwen2.5-VL-3B-Instruct ](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct), augmented by an attention-based action head and finetuned to perform GUI grounding using the dataset [here](https://huggingface.co/datasets/cckevinn/GUI-Actor-Data).

For more details on model design and evaluation, please check: [🏠 Project Page](https://microsoft.github.io/GUI-Actor/) | [πŸ’» Github Repo](https://github.com/microsoft/GUI-Actor) | [πŸ“‘ Paper](https://www.arxiv.org/pdf/2506.03143).

| Model Name                                  | Hugging Face Link                         |
|--------------------------------------------|--------------------------------------------|
| **GUI-Actor-7B-Qwen2-VL**                   | [πŸ€— Hugging Face](https://huggingface.co/microsoft/GUI-Actor-7B-Qwen2-VL)         |
| **GUI-Actor-2B-Qwen2-VL**                   | [πŸ€— Hugging Face](https://huggingface.co/microsoft/GUI-Actor-2B-Qwen2-VL)         |
| **GUI-Actor-7B-Qwen2.5-VL**   | [πŸ€— Hugging Face](https://huggingface.co/microsoft/GUI-Actor-7B-Qwen2.5-VL)       |
| **GUI-Actor-3B-Qwen2.5-VL**   | [πŸ€— Hugging Face](https://huggingface.co/microsoft/GUI-Actor-3B-Qwen2.5-VL)       |
| **GUI-Actor-Verifier-2B**                   | [πŸ€— Hugging Face](https://huggingface.co/microsoft/GUI-Actor-Verifier-2B)        |

## πŸ“Š Performance Comparison on GUI Grounding Benchmarks
Table 1. Main results on ScreenSpot-Pro, ScreenSpot, and ScreenSpot-v2 with **Qwen2-VL** as the backbone. † indicates scores obtained from our own evaluation of the official models on Huggingface.
| Method           | Backbone VLM | ScreenSpot-Pro | ScreenSpot | ScreenSpot-v2 |
|------------------|--------------|----------------|------------|----------------|
| **_72B models:_**
| AGUVIS-72B       | Qwen2-VL     | -              | 89.2       | -              |
| UGround-V1-72B   | Qwen2-VL     | 34.5           | **89.4**   | -              |
| UI-TARS-72B      | Qwen2-VL     | **38.1**       | 88.4       | **90.3**       |
| **_7B models:_**
| OS-Atlas-7B      | Qwen2-VL     | 18.9           | 82.5       | 84.1           |
| AGUVIS-7B        | Qwen2-VL     | 22.9           | 84.4       | 86.0†          |
| UGround-V1-7B    | Qwen2-VL     | 31.1           | 86.3       | 87.6†          |
| UI-TARS-7B       | Qwen2-VL     | 35.7           | **89.5**   | **91.6**       |
| GUI-Actor-7B     | Qwen2-VL     | **40.7**       | 88.3       | 89.5           |
| GUI-Actor-7B + Verifier     | Qwen2-VL    | 44.2       | 89.7       | 90.9           |
| **_2B models:_**
| UGround-V1-2B    | Qwen2-VL     | 26.6           | 77.1       | -              |
| UI-TARS-2B       | Qwen2-VL     | 27.7           | 82.3       | 84.7           |
| GUI-Actor-2B     | Qwen2-VL     | **36.7**       | **86.5**   | **88.6**       |
| GUI-Actor-2B + Verifier     | Qwen2-VL    | 41.8       | 86.9       | 89.3           |

Table 2. Main results on the ScreenSpot-Pro and ScreenSpot-v2 with **Qwen2.5-VL** as the backbone.
| Method         | Backbone VLM | ScreenSpot-Pro | ScreenSpot-v2 |
|----------------|---------------|----------------|----------------|
| **_7B models:_**
| Qwen2.5-VL-7B  | Qwen2.5-VL    | 27.6           | 88.8           |
| Jedi-7B        | Qwen2.5-VL    | 39.5           | 91.7           |
| GUI-Actor-7B   | Qwen2.5-VL    | **44.6**       | **92.1**       |
| GUI-Actor-7B + Verifier   | Qwen2.5-VL    | 47.7       | 92.5       |
| **_3B models:_**
| Qwen2.5-VL-3B  | Qwen2.5-VL    | 25.9           | 80.9           |
| Jedi-3B        | Qwen2.5-VL    | 36.1           | 88.6           |
| GUI-Actor-3B   | Qwen2.5-VL    | **42.2**       | **91.0**       |
| GUI-Actor-3B + Verifier   | Qwen2.5-VL    | 45.9       | 92.4       |

## πŸš€ Usage
```python
import torch

from qwen_vl_utils import process_vision_info
from datasets import load_dataset
from transformers import AutoProcessor
from gui_actor.constants import chat_template
from gui_actor.modeling_qwen25vl import Qwen2_5_VLForConditionalGenerationWithPointer
from gui_actor.inference import inference


# load model
model_name_or_path = "microsoft/GUI-Actor-3B-Qwen2.5-VL"
data_processor = AutoProcessor.from_pretrained(model_name_or_path)
tokenizer = data_processor.tokenizer
model = Qwen2_5_VLForConditionalGenerationWithPointer.from_pretrained(
    model_name_or_path,
    torch_dtype=torch.bfloat16,
    device_map="cuda:0",
    attn_implementation="flash_attention_2"
).eval()

# prepare example
dataset = load_dataset("rootsautomation/ScreenSpot")["test"]
example = dataset[0]
print(f"Intruction: {example['instruction']}")
print(f"ground-truth action region (x1, y1, x2, y2): {[round(i, 2) for i in example['bbox']]}")

conversation = [
    {
        "role": "system",
        "content": [
            {
                "type": "text",
                "text": "You are a GUI agent. Given a screenshot of the current GUI and a human instruction, your task is to locate the screen element that corresponds to the instruction. You should output a PyAutoGUI action that performs a click on the correct position. To indicate the click location, we will use some special tokens, which is used to refer to a visual patch later. For example, you can output: pyautogui.click(<your_special_token_here>).",
            }
        ]
    },
    {
        "role": "user",
        "content": [
            {
                "type": "image",
                "image": example["image"], # PIL.Image.Image or str to path
                # "image_url": "https://xxxxx.png" or "https://xxxxx.jpg" or "file://xxxxx.png" or "", will be split by "base64,"
            },
            {
                "type": "text",
                "text": example["instruction"]
            },
        ],
    },
]

# inference
pred = inference(conversation, model, tokenizer, data_processor, use_placeholder=True, topk=3)
px, py = pred["topk_points"][0]
print(f"Predicted click point: [{round(px, 4)}, {round(py, 4)}]")

# >> Model Response
# Intruction: close this window
# ground-truth action region (x1, y1, x2, y2): [0.9479, 0.1444, 0.9938, 0.2074]
# Predicted click point: [0.9709, 0.1548]
```

## πŸ“ Citation
```
@article{wu2025gui,
  title={GUI-Actor: Coordinate-Free Visual Grounding for GUI Agents},
  author={Wu, Qianhui and Cheng, Kanzhi and Yang, Rui and Zhang, Chaoyun and Yang, Jianwei and Jiang, Huiqiang and Mu, Jian and Peng, Baolin and Qiao, Bo and Tan, Reuben and others},
  journal={arXiv preprint arXiv:2506.03143},
  year={2025}
}
```