--- base_model: - Qwen/Qwen2.5-VL-3B-Instruct license: mit library_name: transformers pipeline_tag: image-text-to-text --- # GUI-Actor-7B with Qwen2.5-VL-7B as backbone VLM This model was introduced in the paper [**GUI-Actor: Coordinate-Free Visual Grounding for GUI Agents**](https://huggingface.co/papers/2506.03143). It is developed based on [Qwen2.5-VL-3B-Instruct ](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct), augmented by an attention-based action head and finetuned to perform GUI grounding using the dataset [here](https://huggingface.co/datasets/cckevinn/GUI-Actor-Data). For more details on model design and evaluation, please check: [🏠 Project Page](https://microsoft.github.io/GUI-Actor/) | [💻 Github Repo](https://github.com/microsoft/GUI-Actor) | [📑 Paper](https://www.arxiv.org/pdf/2506.03143). | Model Name | Hugging Face Link | |--------------------------------------------|--------------------------------------------| | **GUI-Actor-7B-Qwen2-VL** | [🤗 Hugging Face](https://huggingface.co/microsoft/GUI-Actor-7B-Qwen2-VL) | | **GUI-Actor-2B-Qwen2-VL** | [🤗 Hugging Face](https://huggingface.co/microsoft/GUI-Actor-2B-Qwen2-VL) | | **GUI-Actor-7B-Qwen2.5-VL** | [🤗 Hugging Face](https://huggingface.co/microsoft/GUI-Actor-7B-Qwen2.5-VL) | | **GUI-Actor-3B-Qwen2.5-VL** | [🤗 Hugging Face](https://huggingface.co/microsoft/GUI-Actor-3B-Qwen2.5-VL) | | **GUI-Actor-Verifier-2B** | [🤗 Hugging Face](https://huggingface.co/microsoft/GUI-Actor-Verifier-2B) | ## 📊 Performance Comparison on GUI Grounding Benchmarks Table 1. Main results on ScreenSpot-Pro, ScreenSpot, and ScreenSpot-v2 with **Qwen2-VL** as the backbone. † indicates scores obtained from our own evaluation of the official models on Huggingface. | Method | Backbone VLM | ScreenSpot-Pro | ScreenSpot | ScreenSpot-v2 | |------------------|--------------|----------------|------------|----------------| | **_72B models:_** | AGUVIS-72B | Qwen2-VL | - | 89.2 | - | | UGround-V1-72B | Qwen2-VL | 34.5 | **89.4** | - | | UI-TARS-72B | Qwen2-VL | **38.1** | 88.4 | **90.3** | | **_7B models:_** | OS-Atlas-7B | Qwen2-VL | 18.9 | 82.5 | 84.1 | | AGUVIS-7B | Qwen2-VL | 22.9 | 84.4 | 86.0† | | UGround-V1-7B | Qwen2-VL | 31.1 | 86.3 | 87.6† | | UI-TARS-7B | Qwen2-VL | 35.7 | **89.5** | **91.6** | | GUI-Actor-7B | Qwen2-VL | **40.7** | 88.3 | 89.5 | | GUI-Actor-7B + Verifier | Qwen2-VL | 44.2 | 89.7 | 90.9 | | **_2B models:_** | UGround-V1-2B | Qwen2-VL | 26.6 | 77.1 | - | | UI-TARS-2B | Qwen2-VL | 27.7 | 82.3 | 84.7 | | GUI-Actor-2B | Qwen2-VL | **36.7** | **86.5** | **88.6** | | GUI-Actor-2B + Verifier | Qwen2-VL | 41.8 | 86.9 | 89.3 | Table 2. Main results on the ScreenSpot-Pro and ScreenSpot-v2 with **Qwen2.5-VL** as the backbone. | Method | Backbone VLM | ScreenSpot-Pro | ScreenSpot-v2 | |----------------|---------------|----------------|----------------| | **_7B models:_** | Qwen2.5-VL-7B | Qwen2.5-VL | 27.6 | 88.8 | | Jedi-7B | Qwen2.5-VL | 39.5 | 91.7 | | GUI-Actor-7B | Qwen2.5-VL | **44.6** | **92.1** | | GUI-Actor-7B + Verifier | Qwen2.5-VL | 47.7 | 92.5 | | **_3B models:_** | Qwen2.5-VL-3B | Qwen2.5-VL | 25.9 | 80.9 | | Jedi-3B | Qwen2.5-VL | 36.1 | 88.6 | | GUI-Actor-3B | Qwen2.5-VL | **42.2** | **91.0** | | GUI-Actor-3B + Verifier | Qwen2.5-VL | 45.9 | 92.4 | ## 🚀 Usage ```python import torch from qwen_vl_utils import process_vision_info from datasets import load_dataset from transformers import AutoProcessor from gui_actor.constants import chat_template from gui_actor.modeling_qwen25vl import Qwen2_5_VLForConditionalGenerationWithPointer from gui_actor.inference import inference # load model model_name_or_path = "microsoft/GUI-Actor-3B-Qwen2.5-VL" data_processor = AutoProcessor.from_pretrained(model_name_or_path) tokenizer = data_processor.tokenizer model = Qwen2_5_VLForConditionalGenerationWithPointer.from_pretrained( model_name_or_path, torch_dtype=torch.bfloat16, device_map="cuda:0", attn_implementation="flash_attention_2" ).eval() # prepare example dataset = load_dataset("rootsautomation/ScreenSpot")["test"] example = dataset[0] print(f"Intruction: {example['instruction']}") print(f"ground-truth action region (x1, y1, x2, y2): {[round(i, 2) for i in example['bbox']]}") conversation = [ { "role": "system", "content": [ { "type": "text", "text": "You are a GUI agent. Given a screenshot of the current GUI and a human instruction, your task is to locate the screen element that corresponds to the instruction. You should output a PyAutoGUI action that performs a click on the correct position. To indicate the click location, we will use some special tokens, which is used to refer to a visual patch later. For example, you can output: pyautogui.click().", } ] }, { "role": "user", "content": [ { "type": "image", "image": example["image"], # PIL.Image.Image or str to path # "image_url": "https://xxxxx.png" or "https://xxxxx.jpg" or "file://xxxxx.png" or "", will be split by "base64," }, { "type": "text", "text": example["instruction"] }, ], }, ] # inference pred = inference(conversation, model, tokenizer, data_processor, use_placeholder=True, topk=3) px, py = pred["topk_points"][0] print(f"Predicted click point: [{round(px, 4)}, {round(py, 4)}]") # >> Model Response # Intruction: close this window # ground-truth action region (x1, y1, x2, y2): [0.9479, 0.1444, 0.9938, 0.2074] # Predicted click point: [0.9709, 0.1548] ``` ## 📝 Citation ``` @article{wu2025gui, title={GUI-Actor: Coordinate-Free Visual Grounding for GUI Agents}, author={Wu, Qianhui and Cheng, Kanzhi and Yang, Rui and Zhang, Chaoyun and Yang, Jianwei and Jiang, Huiqiang and Mu, Jian and Peng, Baolin and Qiao, Bo and Tan, Reuben and others}, journal={arXiv preprint arXiv:2506.03143}, year={2025} } ```