# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/phi4_multimodal/modular_phi4_multimodal.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_phi4_multimodal.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # Copyright 2025 Microsoft and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from transformers.configuration_utils import PretrainedConfig class Phi4MultimodalVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Phi4MultimodalVisionModel`]. It is used to instantiate a Phi4Multimodal vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the vision encoder of [microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 1152): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 4304): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 27): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. num_channels (`int`, *optional*, defaults to 3): Number of channels in the input images. image_size (`int`, *optional*, defaults to 448): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 14): The size (resolution) of each patch. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. crop_size (`int`, *optional*, defaults to 448): Crop size for the input images. image_token_id (`int`, *optional*, defaults to 200010): The image token id. feature_layer (`int`, *optional*, defaults to -2): The index of the layer of the encoder from which to extract image features. Example: ```python >>> from transformers import Phi4MultimodalVisionConfig >>> # Initializing a Phi4MultimodalVisionConfig with microsoft/Phi-4-multimodal-instruct style configuration >>> configuration = Phi4MultimodalVisionConfig() ```""" model_type = "phi4_multimodal_vision" base_config_key = "vision_config" def __init__( self, hidden_size=1152, intermediate_size=4304, num_hidden_layers=27, num_attention_heads=16, num_channels=3, image_size=448, patch_size=14, hidden_act="gelu_pytorch_tanh", layer_norm_eps=1e-6, attention_dropout=0.0, crop_size: int = 448, image_token_id: int = 200010, feature_layer: int = -2, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.patch_size = patch_size self.image_size = image_size self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.crop_size = crop_size self.image_token_id = image_token_id self.feature_layer = feature_layer class Phi4MultimodalAudioConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Phi4MultimodalAudioModel`]. It is used to instantiate a Phi4Multimodal audio encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the audio encoder of [microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 1024): Dimensionality of the encoder layers. intermediate_size (`int`, *optional*, defaults to 1536): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_blocks (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. activation (`str`, *optional*, defaults to `"swish"`): The non-linear activation function in the MLPs. chunk_size (`int`, *optional*, defaults to -1): The chunk size to create the masks. left_chunk (`int`, *optional*, defaults to 18): The left chunk to create the masks. dropout_rate (`float`, *optional*, defaults to 0.0): The dropout ratio. ext_pw_out_channel (`int`, *optional*, defaults to 1024): Number of out channels in the point-wise conv modules. depthwise_seperable_out_channel (`int`, *optional*, defaults to 1024): Number of out channels in the depth-wise separable conv modules. depthwise_multiplier (`int`, *optional*, defaults to 1): Input size multiplier for the depth-wise separable conv modules. kernel_size (`int`, *optional*, defaults to 3): Kernel size for the depth-wise separable conv modules. conv_activation (`str`, *optional*, defaults to `"swish"`): The non-linear activation function in the conv modules. input_size (`int`, *optional*, defaults to 80): Input size for the audio model. conv_glu_type (`str`, *optional*, defaults to `"swish"`): The non-linear activation function in the point-wise conv modules. time_reduction (`int`, *optional*, defaults to 8): Time reduction (subsampling factor). bias_max_distance (`int`, *optional*, defaults to 1000): Max distance for the relative attention bias module. bias_symmetric (`bool`, *optional*, defaults to `False`): Whether the relative attention bias should be symmetric or not. nemo_activation (`str`, *optional*, defaults to `"relu"`): The non-linear activation function in the nemo conv modules. nemo_conv_channels (`int`, *optional*, defaults to 1024): Number of channels in the nemo conv modules. downsample_rate (`int`, *optional*, defaults to 1): Downsample rate for the audio feature extractor. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. audio_token_id (`int`, *optional*, defaults to 200011): The audio token id. feature_layer (`int`, *optional*, defaults to -2): The index of the layer of the encoder from which to extract audio features. Example: ```python >>> from transformers import Phi4MultimodalAudioConfig >>> # Initializing a Phi4MultimodalAudioConfig with microsoft/Phi-4-multimodal-instruct style configuration >>> configuration = Phi4MultimodalAudioConfig() ```""" model_type = "phi4_multimodal_audio" def __init__( self, hidden_size: int = 1024, intermediate_size: int = 1536, num_blocks: int = 24, num_attention_heads: int = 16, activation: str = "swish", chunk_size: int = -1, left_chunk: int = 18, dropout_rate: float = 0.0, ext_pw_out_channel: int = 1024, depthwise_seperable_out_channel: int = 1024, depthwise_multiplier: int = 1, kernel_size: int = 3, conv_activation: str = "swish", input_size: int = 80, conv_glu_type: str = "swish", time_reduction: int = 8, bias_max_distance: int = 1000, bias_symmetric: bool = False, nemo_activation: str = "relu", nemo_conv_channels: int = 1024, downsample_rate: int = 1, initializer_range: float = 0.02, audio_token_id: int = 200011, feature_layer: int = -2, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.activation = activation self.chunk_size = chunk_size self.left_chunk = left_chunk self.num_blocks = num_blocks self.dropout_rate = dropout_rate self.ext_pw_out_channel = ext_pw_out_channel self.depthwise_seperable_out_channel = depthwise_seperable_out_channel self.depthwise_multiplier = depthwise_multiplier self.kernel_size = kernel_size self.conv_activation = conv_activation self.input_size = input_size self.conv_glu_type = conv_glu_type self.time_reduction = time_reduction self.bias_max_distance = bias_max_distance self.bias_symmetric = bias_symmetric self.nemo_activation = nemo_activation self.nemo_conv_channels = nemo_conv_channels self.downsample_rate = downsample_rate self.audio_token_id = audio_token_id self.initializer_range = initializer_range self.feature_layer = feature_layer if time_reduction % 2 != 0: raise ValueError("`time_reduction` should be a multiple of 2!") length = input_size for _ in range(int(math.log(time_reduction, 2))): length = math.floor((length - 1) / 2 + 1) self.nemo_final_size = length class Phi4MultimodalConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Phi4MultimodalModel`]. It is used to instantiate a Phi4Multimodal model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 200064): Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Phi3Model`]. hidden_size (`int`, *optional*, defaults to 3072): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 8192): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*, defaults to 8): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. resid_pdrop (`float`, *optional*, defaults to 0.0): Dropout probability for mlp outputs. embd_pdrop (`int`, *optional*, defaults to 0.0): The dropout ratio for the embeddings. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio after computing the attention scores. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 131072): The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon value used for the RMSNorm. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. rope_scaling (`dict`, *optional*): The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size divided by the number of attention heads divided by 2. partial_rotary_factor (`float`, *optional*, defaults to `1.0`): Percentage of the query and keys which will have rotary embedding. Must be between 0.0 and 1.0. bos_token_id (`int`, *optional*, defaults to 199999): The id of the "beginning-of-sequence" token. eos_token_id (`int` or `list[int]`, *optional*, defaults to `[199999, 200020]`): The id of the "end-of-sequence" token. pad_token_id (`int`, *optional*, defaults to 199999): The id of the padding token. original_max_position_embeddings (`int`, *optional*, defaults to 4096): The maximum sequence length that this model was trained with. This is used to determine the size of the original RoPE embeddings when using long scaling. sliding_window (`int`, *optional*): Sliding window attention window size. If `None`, no sliding window is applied. vision_config (`Phi4MultimodalVisionConfig` or `dict`, *optional*): The vision config for the underlying image embedding model. If not provided, will default to the configuration used to instantiate a model similar in architecture as [microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct). audio_config (`Phi4MultimodalAudioConfig` or `dict`, *optional*): The audio config for the underlying audio embedding model. If not provided, will default to the configuration used to instantiate a model similar in architecture as [microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct). Example: ```python >>> from transformers import Phi4MultimodalModel, Phi4MultimodalConfig >>> # Initializing a Phi4Multimodal style configuration >>> configuration = Phi4MultimodalConfig.from_pretrained("microsoft/Phi-4-multimodal-instruct") >>> # Initializing a model from the configuration >>> model = Phi4MultimodalModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "phi4_multimodal" keys_to_ignore_at_inference = ["past_key_values"] base_model_tp_plan = { "layers.*.self_attn.qkv_proj": "colwise_rep", # we need to replicate here due to the slicing of qkv "layers.*.self_attn.o_proj": "rowwise_rep", # we need to replicate here due to the slicing of qkv "layers.*.mlp.gate_up_proj": "colwise_rep", # we need to replicate here due to the `chunk` operation "layers.*.mlp.down_proj": "rowwise_rep", # we need to replicate here due to the `chunk` operation } base_model_pp_plan = { "embed_tokens": (["input_ids"], ["inputs_embeds"]), "layers": (["hidden_states", "attention_mask"], ["hidden_states"]), "norm": (["hidden_states"], ["hidden_states"]), } sub_configs = {"audio_config": Phi4MultimodalAudioConfig, "vision_config": Phi4MultimodalVisionConfig} def __init__( self, vocab_size=200064, hidden_size=3072, intermediate_size=8192, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=8, resid_pdrop=0.0, embd_pdrop=0.0, attention_dropout=0.0, hidden_act="silu", max_position_embeddings=131072, initializer_range=0.02, rms_norm_eps=1e-5, use_cache=True, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, partial_rotary_factor=1, bos_token_id=199999, eos_token_id=[199999, 200020], pad_token_id=199999, original_max_position_embeddings=4096, sliding_window=None, vision_config=None, audio_config=None, **kwargs, ): super().__init__( bos_token_id=bos_token_id, eos_token_id=eos_token_id, pad_token_id=pad_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.resid_pdrop = resid_pdrop self.embd_pdrop = embd_pdrop self.attention_dropout = attention_dropout self.hidden_act = hidden_act self.max_position_embeddings = max_position_embeddings self.original_max_position_embeddings = original_max_position_embeddings self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.partial_rotary_factor = partial_rotary_factor self._rope_scaling_adjustment() self._rope_scaling_validation() self.sliding_window = sliding_window if isinstance(vision_config, dict): vision_config = Phi4MultimodalVisionConfig(**vision_config) elif vision_config is None: Phi4MultimodalVisionConfig() self.vision_config = vision_config if isinstance(audio_config, dict): audio_config = Phi4MultimodalAudioConfig(**audio_config) elif vision_config is None: audio_config = Phi4MultimodalAudioConfig() self.audio_config = audio_config def _rope_scaling_adjustment(self): """ Adjust the `type` of the `rope_scaling` configuration for backward compatibility. """ if self.rope_scaling is None: return rope_scaling_type = self.rope_scaling.get("type", None) # For backward compatibility if previous version used "su" or "yarn" if rope_scaling_type is not None and rope_scaling_type in ["su", "yarn"]: self.rope_scaling["type"] = "longrope" def _rope_scaling_validation(self): """ Validate the `rope_scaling` configuration. """ if self.rope_scaling is None: return if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3: raise ValueError( "`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, " f"got {self.rope_scaling}" ) rope_scaling_type = self.rope_scaling.get("type", None) rope_scaling_short_factor = self.rope_scaling.get("short_factor", None) rope_scaling_long_factor = self.rope_scaling.get("long_factor", None) if rope_scaling_type is None or rope_scaling_type not in ["longrope"]: raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}") if not ( isinstance(rope_scaling_short_factor, list) and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor) ): raise ValueError( f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}" ) rotary_ndims = int(self.hidden_size // self.num_attention_heads * self.partial_rotary_factor) if not len(rope_scaling_short_factor) == rotary_ndims // 2: raise ValueError( f"`rope_scaling`'s short_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_short_factor)}" ) if not ( isinstance(rope_scaling_long_factor, list) and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor) ): raise ValueError( f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}" ) if not len(rope_scaling_long_factor) == rotary_ndims // 2: raise ValueError( f"`rope_scaling`'s long_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_long_factor)}" ) __all__ = ["Phi4MultimodalVisionConfig", "Phi4MultimodalAudioConfig", "Phi4MultimodalConfig"] Phi4MultimodalConfig.register_for_auto_class()