# Copyright 2025 Microsoft and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for Phi4Multimodal """ import math from typing import List, Optional, Union, TypedDict import torch from torchvision.transforms import functional as F from transformers.image_processing_utils_fast import ( BaseImageProcessorFast, BatchFeature, Unpack, convert_to_rgb, ChannelDimension ) from transformers.image_utils import ImageInput, make_flat_list_of_images, valid_images from transformers.utils import TensorType, logging logger = logging.get_logger(__name__) class DefaultFastImageProcessorKwargs(TypedDict, total=False): do_resize: Optional[bool] size: Optional[dict[str, int]] default_to_square: Optional[bool] resample: Optional[Union["PILImageResampling", "F.InterpolationMode"]] do_center_crop: Optional[bool] crop_size: Optional[dict[str, int]] do_rescale: Optional[bool] rescale_factor: Optional[Union[int, float]] do_normalize: Optional[bool] image_mean: Optional[Union[float, list[float]]] image_std: Optional[Union[float, list[float]]] do_convert_rgb: Optional[bool] return_tensors: Optional[Union[str, TensorType]] data_format: Optional[ChannelDimension] input_data_format: Optional[Union[str, ChannelDimension]] device: Optional["torch.device"] class Phi4MultimodalFastImageProcessorKwargs(DefaultFastImageProcessorKwargs): image_size: Optional[int] patch_size: Optional[int] dynamic_hd: Optional[int] class Phi4MultimodalImageProcessorFast(BaseImageProcessorFast): r""" Constructs a Phi4Multimodal image processor. """ image_size = 448 patch_size = 14 dynamic_hd = 36 image_mean = [0.5, 0.5, 0.5] image_std = [0.5, 0.5, 0.5] valid_init_kwargs = Phi4MultimodalFastImageProcessorKwargs model_input_names = ["image_pixel_values", "image_sizes", "image_attention_mask"] def __init__(self, **kwargs: Unpack[Phi4MultimodalFastImageProcessorKwargs]): super().__init__(**kwargs) def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height): best_ratio_diff = float("inf") best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * self.image_size * self.image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(self, image, max_num=36, min_num=1): image_size = self.image_size patch_size = self.patch_size mask_size = image_size // patch_size orig_width, orig_height = image.size w_crop_num = math.ceil(orig_width / float(image_size)) h_crop_num = math.ceil(orig_height / float(image_size)) if w_crop_num * h_crop_num > max_num: aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = { (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num } target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = self.find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] else: target_width = image_size * w_crop_num target_height = image_size * h_crop_num target_aspect_ratio = (w_crop_num, h_crop_num) # Calculate the ratio ratio_width = target_width / orig_width ratio_height = target_height / orig_height if ratio_width < ratio_height: new_size = (target_width, int(orig_height * ratio_width)) padding_width = 0 padding_height = target_height - int(orig_height * ratio_width) else: new_size = (int(orig_width * ratio_height), target_height) padding_width = target_width - int(orig_width * ratio_height) padding_height = 0 attention_mask = torch.ones((int(mask_size * target_aspect_ratio[1]), int(mask_size * target_aspect_ratio[0]))) if padding_width >= patch_size: attention_mask[:, -math.floor(padding_width / patch_size) :] = 0 if padding_height >= patch_size: attention_mask[-math.floor(padding_height / patch_size) :, :] = 0 if min(new_size[1], target_height) < 10 or min(new_size[0], target_width) < 10: raise ValueError(f"the aspect ratio is very extreme {new_size}") image = F.resize(image, [new_size[1], new_size[0]]) resized_img = F.pad(image, [0, 0, padding_width, padding_height], fill=[255, 255, 255]) return resized_img, attention_mask def pad_to_max_num_crops(self, images, max_crops=5): """ images: B x 3 x H x W, B<=max_crops """ B, _, H, W = images.shape if B < max_crops: pad = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device) images = torch.cat([images, pad], dim=0) return images def pad_mask_to_max_num_crops(self, masks, max_crops=5): B, H, W = masks.shape if B < max_crops: pad = torch.ones(max_crops - B, H, W, dtype=masks.dtype, device=masks.device) masks = torch.cat([masks, pad], dim=0) return masks def preprocess( self, images: ImageInput, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, return_tensors: Optional[Union[str, TensorType]] = None, ): """ Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. """ image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std images = make_flat_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) images = [convert_to_rgb(image) for image in images] image_size = self.image_size patch_size = self.patch_size mask_size = image_size // patch_size imgs_and_masks = [self.dynamic_preprocess(image, max_num=self.dynamic_hd) for image in images] images, image_attention_masks = [x[0] for x in imgs_and_masks], [x[1] for x in imgs_and_masks] images = [F.to_tensor(image) for image in images] hd_images = [F.normalize(image, image_mean, image_std) for image in images] global_image = [ torch.nn.functional.interpolate( image.unsqueeze(0).float(), size=(image_size, image_size), mode="bicubic", ).to(image.dtype) for image in hd_images ] shapes = [[image.size(1), image.size(2)] for image in hd_images] mask_shapes = [[mask.size(0), mask.size(1)] for mask in image_attention_masks] global_attention_mask = [torch.ones((1, mask_size, mask_size)) for _ in hd_images] hd_images_reshape = [] for im, (h, w) in zip(hd_images, shapes): im = im.reshape(1, 3, h // image_size, image_size, w // image_size, image_size) im = im.permute(0, 2, 4, 1, 3, 5) im = im.reshape(-1, 3, image_size, image_size) hd_images_reshape.append(im.contiguous()) attention_masks_reshape = [] for mask, (h, w) in zip(image_attention_masks, mask_shapes): mask = mask.reshape(h // mask_size, mask_size, w // mask_size, mask_size) mask = mask.transpose(1, 2) mask = mask.reshape(-1, mask_size, mask_size) attention_masks_reshape.append(mask.contiguous()) downsample_attention_masks = [] for mask, (h, w) in zip(attention_masks_reshape, mask_shapes): mask = mask[:, 0::2, 0::2] mask = mask.reshape( h // mask_size, w // mask_size, mask_size // 2 + mask_size % 2, mask_size // 2 + mask_size % 2 ) mask = mask.transpose(1, 2) mask = mask.reshape(mask.size(0) * mask.size(1), mask.size(2) * mask.size(3)) downsample_attention_masks.append(mask) num_img_tokens = [ 256 + 1 + int(mask.sum().item()) + int(mask[:, 0].sum().item()) + 16 for mask in downsample_attention_masks ] hd_images_reshape = [ torch.cat([_global_image] + [_im], dim=0) for _global_image, _im in zip(global_image, hd_images_reshape) ] hd_masks_reshape = [ torch.cat([_global_mask] + [_mask], dim=0) for _global_mask, _mask in zip(global_attention_mask, attention_masks_reshape) ] max_crops = max([img.size(0) for img in hd_images_reshape]) image_transformed = [self.pad_to_max_num_crops(im, max_crops) for im in hd_images_reshape] image_transformed = torch.stack(image_transformed, dim=0) mask_transformed = [self.pad_mask_to_max_num_crops(mask, max_crops) for mask in hd_masks_reshape] mask_transformed = torch.stack(mask_transformed, dim=0) returned_input_image_embeds = image_transformed returned_image_sizes = torch.tensor(shapes, dtype=torch.long) returned_image_attention_mask = mask_transformed returned_num_img_tokens = num_img_tokens data = { "image_pixel_values": returned_input_image_embeds, "image_sizes": returned_image_sizes, "image_attention_mask": returned_image_attention_mask, "num_img_tokens": returned_num_img_tokens, } return BatchFeature(data=data, tensor_type=return_tensors) __all__ = ["Phi4MultimodalImageProcessorFast"] Phi4MultimodalImageProcessorFast.register_for_auto_class()