--- language: - en license: mit # Example: apache-2.0 or any license from https://huggingface.co/docs/hub/model-repos#list-of-license-identifiers tags: - text # Example: audio - Twitter datasets: - CLPsych 2015 # Example: common_voice. Use dataset id from https://hf.co/datasets metrics: - accuracy, f1, precision, recall, AUC # Example: wer. Use metric id from https://hf.co/metrics model-index: - name: distilbert-depression-base results: [] --- # distilbert-depression-base This model is a fine-tuned version of [base-uncased](https://huggingface.co/distilbert-base-uncased) trained on CLPsych 2015 and evaluated on a scraped dataset from Twitter. It achieves the following results on the evaluation set: - Evaluation Loss: 0.64 - Accuracy: 0.65 - F1: 0.70 - Precision: 0.61 - Recall: 0.83 - AUC: 0.65 ## Intended uses & limitations Feed a corpus of tweets to the model to generate label if input is indicative of depression or not. Limitation: All token sequences longer than 512 are automatically truncated. ### How to use You can use this model directly with a pipeline for sentiment analysis: ```python >>> from transformers import DistilBertTokenizerFast, AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased') >>> from transformers import DistilBertForSequenceClassification >>> model = DistilBertForSequenceClassification.from_pretrained(r"distilbert-depression-base") >>> from transformers import pipeline >>> classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) >>> tokenizer_kwargs = {'padding':True,'truncation':True,'max_length':512} >>> result=classifier('pain peko',**tokenizer_kwargs) #For truncation to apply in the pipeline [{'label': 'LABEL_1', 'score': 0.5048992037773132}] ``` ## Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.39e-05 - train_batch_size: 16 - eval_batch_size: 16 - weight_decay: 0.13 - num_epochs: 3.0 ## Training results | Epoch | Training Loss | Validation Loss | Accuracy | F1 | Precision | Recall | AUC | |:-----:|:-------------:|:---------------:|:--------:|:--------:|:---------:|:--------:|:--------:| | 1.0 | 0.68 | 0.66 | 0.59 | 0.63 | 0.56 | 0.73 | 0.59 | | 2.0 | 0.60 | 0.68 | 0.63 | 0.69 | 0.59 | 0.83 | 0.63 | | 3.0 | 0.52 | 0.67 | 0.64 | 0.66 | 0.62 | 0.72 | 0.65 |