import pandas as pd import argparse import perplexity from tqdm import tqdm from joblib import Parallel, delayed import os def calculate_doc_perplexity(row_id, doc, doctype, lang): id = doc["id"] paragraphs = doc["paragraphs"] doc_text = "\n".join(para["text"] for para in paragraphs) perplexities = perplexity.source_perplexities(doc_text, lang, include_harmful=False) return [id, doctype, lang, perplexities] def main(args): file = args.file doctype = '_'.join(os.path.basename(file).split('_')[:-1]) lang = os.path.basename(file).split('_')[-1].split('.')[0] chunks = pd.read_json(file, lines=True, chunksize=1000) rows = [] for chunk in tqdm(chunks, desc=f"Processing chunks of {args.file}"): rows.extend(Parallel(n_jobs=args.jobs)( delayed(calculate_doc_perplexity)(row_id, doc, doctype, lang) for row_id, doc in chunk.iterrows() if doc["paragraphs"] )) df = pd.DataFrame(rows, columns=["id", "doc_type", "lang", "perplexities"]) # Ensure the output directory exists os.makedirs(args.output_path, exist_ok=True) # Save the DataFrame with the ".jsonl" extension output_file = os.path.join(args.output_path, f"{doctype}_{lang}.jsonl") df.to_json(output_file, lines=True, orient="records") if __name__ == "__main__": # Set up argument parsing outside of the main() function parser = argparse.ArgumentParser(description='Process documents to calculate perplexity.') parser.add_argument('file', type=str, help='Input file path') parser.add_argument('--output_path', type=str, default='tmp/', help='Output file path') parser.add_argument('--jobs', type=int, default=10, help='Number of jobs to use for parallel processing') args = parser.parse_args() main(args)