--- license: llama3.2 datasets: - teknium/OpenHermes-2.5 - NousResearch/hermes-function-calling-v1 base_model: - minpeter/QLoRA-Llama-3.2-1B-chatml-tool-v1 - minpeter/Llama-3.2-1B-AlternateTokenizer-tool-chatml language: - en pipeline_tag: text-generation library_name: transformers tags: - axolotl - merge new_version: minpeter/Llama-3.2-1B-chatml-tool-v2 --- axolotl config ```yaml base_model: minpeter/Llama-3.2-1B-AlternateTokenizer-chatml load_in_8bit: false load_in_4bit: true strict: false datasets: - path: teknium/OpenHermes-2.5 type: chat_template chat_template: chatml field_messages: conversations message_field_role: from message_field_content: value shards: 800 - path: func-calling-singleturn.jsonl type: chat_template chat_template: chatml field_messages: conversations message_field_role: from message_field_content: value shards: 2 save_safetensors: true auto_resume_from_checkpoints: false save_steps: 200 chat_template: chatml dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ./output adapter: qlora lora_model_dir: sequence_len: 4096 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: "axolotl" wandb_entity: "kasfiekfs-e" wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: # flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: <|begin_of_text|> eos_token: <|im_end|> pad_token: <|end_of_text|> # <--- unsloth config ---> unsloth_lora_mlp: true unsloth_lora_qkv: true unsloth_lora_o: true ``` function calling prompt ```yaml tool_call_body_style: "arguments_name_object" system_prompt_template: | You are a function calling AI model. You are provided with function signatures within XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools: {{tools}} Use the following pydantic model json schema for each tool call you will make: {'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']} For each function call return a json object with function name and arguments within XML tags as follows: {'arguments': , 'name': } ```