--- library_name: peft license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - axolotl - generated_from_trainer datasets: - minpeter/stanford-alpaca-regen-llama-3.3 model-index: - name: LoRA-Llama-3.2-1B-Alpaca results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: meta-llama/Llama-3.2-1B # Automatically upload checkpoint and final model to HF hub_model_id: minpeter/LoRA-Llama-3.2-1B-Alpaca load_in_8bit: false load_in_4bit: false strict: false chat_template: alpaca datasets: - path: minpeter/stanford-alpaca-regen-llama-3.3 type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ./output adapter: lora lora_model_dir: sequence_len: 2048 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true lora_r: 16 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: "axolotl" wandb_entity: "kasfiekfs-e" wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: "<|end_of_text|>" ```

# LoRA-Llama-3.2-1B-Alpaca This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on the minpeter/stanford-alpaca-regen-llama-3.3 dataset. It achieves the following results on the evaluation set: - Loss: 1.2509 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.711 | 0.0021 | 1 | 1.6925 | | 1.353 | 0.2516 | 121 | 1.3002 | | 1.145 | 0.5031 | 242 | 1.2688 | | 1.3371 | 0.7547 | 363 | 1.2509 | ### Framework versions - PEFT 0.14.0 - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0