miosipof commited on
Commit
6eda9ab
·
verified ·
1 Parent(s): b369157

End of training

Browse files
Files changed (1) hide show
  1. README.md +96 -0
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: miosipof/whisper-small-ft-balbus-sep28k-multiclass_v3a
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - balbus-classifier
9
+ metrics:
10
+ - accuracy
11
+ - precision
12
+ - recall
13
+ - f1
14
+ model-index:
15
+ - name: whisper-small-ft-balbus-sep28k-multiclass_v3a-ft-balbus-sep28k-multiclass_v4_IT
16
+ results:
17
+ - task:
18
+ name: Audio Classification
19
+ type: audio-classification
20
+ dataset:
21
+ name: Apple dataset
22
+ type: balbus-classifier
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.85924617196702
27
+ - name: Precision
28
+ type: precision
29
+ value: 0.8795132394309227
30
+ - name: Recall
31
+ type: recall
32
+ value: 0.8594066773532715
33
+ - name: F1
34
+ type: f1
35
+ value: 0.8603528122668381
36
+ ---
37
+
38
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
39
+ should probably proofread and complete it, then remove this comment. -->
40
+
41
+ # whisper-small-ft-balbus-sep28k-multiclass_v3a-ft-balbus-sep28k-multiclass_v4_IT
42
+
43
+ This model is a fine-tuned version of [miosipof/whisper-small-ft-balbus-sep28k-multiclass_v3a](https://huggingface.co/miosipof/whisper-small-ft-balbus-sep28k-multiclass_v3a) on the Apple dataset dataset.
44
+ It achieves the following results on the evaluation set:
45
+ - Loss: 0.2301
46
+ - Accuracy: 0.8592
47
+ - Precision: 0.8795
48
+ - Recall: 0.8594
49
+ - F1: 0.8604
50
+ - Roc-auc: None
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 3e-06
70
+ - train_batch_size: 16
71
+ - eval_batch_size: 8
72
+ - seed: 42
73
+ - gradient_accumulation_steps: 4
74
+ - total_train_batch_size: 64
75
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
76
+ - lr_scheduler_type: linear
77
+ - lr_scheduler_warmup_ratio: 0.5
78
+ - num_epochs: 2
79
+ - mixed_precision_training: Native AMP
80
+
81
+ ### Training results
82
+
83
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc-auc |
84
+ |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:|
85
+ | 0.6519 | 0.4188 | 100 | 0.6127 | 0.4741 | 0.5574 | 0.4759 | 0.4098 | None |
86
+ | 0.4774 | 0.8377 | 200 | 0.4080 | 0.7468 | 0.7651 | 0.7470 | 0.7497 | None |
87
+ | 0.2425 | 1.2565 | 300 | 0.2518 | 0.8439 | 0.8566 | 0.8443 | 0.8445 | None |
88
+ | 0.2275 | 1.6754 | 400 | 0.2301 | 0.8592 | 0.8795 | 0.8594 | 0.8604 | None |
89
+
90
+
91
+ ### Framework versions
92
+
93
+ - Transformers 4.45.2
94
+ - Pytorch 2.2.0
95
+ - Datasets 3.6.0
96
+ - Tokenizers 0.20.3