End of training
Browse files
README.md
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: openai/whisper-small
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- balbus-classifier
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
- precision
|
12 |
+
- recall
|
13 |
+
- f1
|
14 |
+
model-index:
|
15 |
+
- name: whisper-small-ft-balbus-sep28k-multiclass_v3
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
name: Audio Classification
|
19 |
+
type: audio-classification
|
20 |
+
dataset:
|
21 |
+
name: Apple dataset
|
22 |
+
type: balbus-classifier
|
23 |
+
metrics:
|
24 |
+
- name: Accuracy
|
25 |
+
type: accuracy
|
26 |
+
value: 0.37653846153846154
|
27 |
+
- name: Precision
|
28 |
+
type: precision
|
29 |
+
value: 0.1255128205128205
|
30 |
+
- name: Recall
|
31 |
+
type: recall
|
32 |
+
value: 0.3333333333333333
|
33 |
+
- name: F1
|
34 |
+
type: f1
|
35 |
+
value: 0.18236006333240196
|
36 |
+
---
|
37 |
+
|
38 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
39 |
+
should probably proofread and complete it, then remove this comment. -->
|
40 |
+
|
41 |
+
# whisper-small-ft-balbus-sep28k-multiclass_v3
|
42 |
+
|
43 |
+
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Apple dataset dataset.
|
44 |
+
It achieves the following results on the evaluation set:
|
45 |
+
- Loss: 0.9882
|
46 |
+
- Accuracy: 0.3765
|
47 |
+
- Precision: 0.1255
|
48 |
+
- Recall: 0.3333
|
49 |
+
- F1: 0.1824
|
50 |
+
- Roc-auc: None
|
51 |
+
|
52 |
+
## Model description
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Intended uses & limitations
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training and evaluation data
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 0.001
|
70 |
+
- train_batch_size: 8
|
71 |
+
- eval_batch_size: 4
|
72 |
+
- seed: 42
|
73 |
+
- gradient_accumulation_steps: 4
|
74 |
+
- total_train_batch_size: 32
|
75 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
76 |
+
- lr_scheduler_type: linear
|
77 |
+
- lr_scheduler_warmup_ratio: 0.5
|
78 |
+
- training_steps: 1200
|
79 |
+
- mixed_precision_training: Native AMP
|
80 |
+
|
81 |
+
### Training results
|
82 |
+
|
83 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc-auc |
|
84 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:|
|
85 |
+
| 0.8577 | 0.1368 | 100 | 0.8818 | 0.5219 | 0.5566 | 0.5095 | 0.4750 | None |
|
86 |
+
| 1.0396 | 0.2735 | 200 | 1.0092 | 0.3335 | 0.1112 | 0.3333 | 0.1667 | None |
|
87 |
+
| 1.1409 | 0.4103 | 300 | 1.0101 | 0.3746 | 0.2324 | 0.3353 | 0.2285 | None |
|
88 |
+
| 1.0003 | 0.5470 | 400 | 1.0013 | 0.3765 | 0.1255 | 0.3333 | 0.1824 | None |
|
89 |
+
| 1.0057 | 0.6838 | 500 | 1.0001 | 0.3765 | 0.1255 | 0.3333 | 0.1824 | None |
|
90 |
+
| 0.993 | 0.8205 | 600 | 1.0461 | 0.3765 | 0.1255 | 0.3333 | 0.1824 | None |
|
91 |
+
| 1.0017 | 0.9573 | 700 | 0.9998 | 0.3404 | 0.2501 | 0.3351 | 0.2226 | None |
|
92 |
+
| 0.9992 | 1.0940 | 800 | 0.9927 | 0.3715 | 0.2364 | 0.3344 | 0.2418 | None |
|
93 |
+
| 0.9805 | 1.2308 | 900 | 0.9965 | 0.3765 | 0.1255 | 0.3333 | 0.1824 | None |
|
94 |
+
| 0.9934 | 1.3675 | 1000 | 0.9944 | 0.3804 | 0.2501 | 0.3499 | 0.2848 | None |
|
95 |
+
| 0.9961 | 1.5043 | 1100 | 0.9899 | 0.3792 | 0.3125 | 0.3363 | 0.1928 | None |
|
96 |
+
| 0.9878 | 1.6410 | 1200 | 0.9882 | 0.3765 | 0.1255 | 0.3333 | 0.1824 | None |
|
97 |
+
|
98 |
+
|
99 |
+
### Framework versions
|
100 |
+
|
101 |
+
- Transformers 4.45.2
|
102 |
+
- Pytorch 2.2.0
|
103 |
+
- Datasets 3.6.0
|
104 |
+
- Tokenizers 0.20.3
|