miosipof commited on
Commit
40e944d
·
verified ·
1 Parent(s): 0b80043

End of training

Browse files
Files changed (1) hide show
  1. README.md +104 -0
README.md ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: openai/whisper-small
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - balbus-classifier
9
+ metrics:
10
+ - accuracy
11
+ - precision
12
+ - recall
13
+ - f1
14
+ model-index:
15
+ - name: whisper-small-ft-balbus-sep28k-multiclass_v3
16
+ results:
17
+ - task:
18
+ name: Audio Classification
19
+ type: audio-classification
20
+ dataset:
21
+ name: Apple dataset
22
+ type: balbus-classifier
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.37653846153846154
27
+ - name: Precision
28
+ type: precision
29
+ value: 0.1255128205128205
30
+ - name: Recall
31
+ type: recall
32
+ value: 0.3333333333333333
33
+ - name: F1
34
+ type: f1
35
+ value: 0.18236006333240196
36
+ ---
37
+
38
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
39
+ should probably proofread and complete it, then remove this comment. -->
40
+
41
+ # whisper-small-ft-balbus-sep28k-multiclass_v3
42
+
43
+ This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Apple dataset dataset.
44
+ It achieves the following results on the evaluation set:
45
+ - Loss: 0.9882
46
+ - Accuracy: 0.3765
47
+ - Precision: 0.1255
48
+ - Recall: 0.3333
49
+ - F1: 0.1824
50
+ - Roc-auc: None
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 0.001
70
+ - train_batch_size: 8
71
+ - eval_batch_size: 4
72
+ - seed: 42
73
+ - gradient_accumulation_steps: 4
74
+ - total_train_batch_size: 32
75
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
76
+ - lr_scheduler_type: linear
77
+ - lr_scheduler_warmup_ratio: 0.5
78
+ - training_steps: 1200
79
+ - mixed_precision_training: Native AMP
80
+
81
+ ### Training results
82
+
83
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc-auc |
84
+ |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:|
85
+ | 0.8577 | 0.1368 | 100 | 0.8818 | 0.5219 | 0.5566 | 0.5095 | 0.4750 | None |
86
+ | 1.0396 | 0.2735 | 200 | 1.0092 | 0.3335 | 0.1112 | 0.3333 | 0.1667 | None |
87
+ | 1.1409 | 0.4103 | 300 | 1.0101 | 0.3746 | 0.2324 | 0.3353 | 0.2285 | None |
88
+ | 1.0003 | 0.5470 | 400 | 1.0013 | 0.3765 | 0.1255 | 0.3333 | 0.1824 | None |
89
+ | 1.0057 | 0.6838 | 500 | 1.0001 | 0.3765 | 0.1255 | 0.3333 | 0.1824 | None |
90
+ | 0.993 | 0.8205 | 600 | 1.0461 | 0.3765 | 0.1255 | 0.3333 | 0.1824 | None |
91
+ | 1.0017 | 0.9573 | 700 | 0.9998 | 0.3404 | 0.2501 | 0.3351 | 0.2226 | None |
92
+ | 0.9992 | 1.0940 | 800 | 0.9927 | 0.3715 | 0.2364 | 0.3344 | 0.2418 | None |
93
+ | 0.9805 | 1.2308 | 900 | 0.9965 | 0.3765 | 0.1255 | 0.3333 | 0.1824 | None |
94
+ | 0.9934 | 1.3675 | 1000 | 0.9944 | 0.3804 | 0.2501 | 0.3499 | 0.2848 | None |
95
+ | 0.9961 | 1.5043 | 1100 | 0.9899 | 0.3792 | 0.3125 | 0.3363 | 0.1928 | None |
96
+ | 0.9878 | 1.6410 | 1200 | 0.9882 | 0.3765 | 0.1255 | 0.3333 | 0.1824 | None |
97
+
98
+
99
+ ### Framework versions
100
+
101
+ - Transformers 4.45.2
102
+ - Pytorch 2.2.0
103
+ - Datasets 3.6.0
104
+ - Tokenizers 0.20.3