End of training
Browse files
README.md
CHANGED
@@ -23,16 +23,16 @@ model-index:
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
-
value: 0.
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
-
value: 0.
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
-
value: 0.
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
-
value: 0.
|
36 |
---
|
37 |
|
38 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -42,11 +42,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
42 |
|
43 |
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Apple dataset dataset.
|
44 |
It achieves the following results on the evaluation set:
|
45 |
-
- Loss: 0.
|
46 |
-
- Accuracy: 0.
|
47 |
-
- Precision: 0.
|
48 |
-
- Recall: 0.
|
49 |
-
- F1: 0.
|
50 |
- Roc-auc: None
|
51 |
|
52 |
## Model description
|
@@ -66,12 +66,12 @@ More information needed
|
|
66 |
### Training hyperparameters
|
67 |
|
68 |
The following hyperparameters were used during training:
|
69 |
-
- learning_rate:
|
70 |
-
- train_batch_size:
|
71 |
-
- eval_batch_size:
|
72 |
- seed: 42
|
73 |
- gradient_accumulation_steps: 4
|
74 |
-
- total_train_batch_size:
|
75 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
76 |
- lr_scheduler_type: linear
|
77 |
- lr_scheduler_warmup_ratio: 0.5
|
@@ -82,18 +82,18 @@ The following hyperparameters were used during training:
|
|
82 |
|
83 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc-auc |
|
84 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:|
|
85 |
-
| 0.
|
86 |
-
|
|
87 |
-
|
|
88 |
-
|
|
89 |
-
|
|
90 |
-
| 0.
|
91 |
-
|
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
|
98 |
|
99 |
### Framework versions
|
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
+
value: 0.6703846153846154
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
+
value: 0.6905353453494015
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
+
value: 0.6572632164958351
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
+
value: 0.6613993030224551
|
36 |
---
|
37 |
|
38 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
42 |
|
43 |
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Apple dataset dataset.
|
44 |
It achieves the following results on the evaluation set:
|
45 |
+
- Loss: 0.5221
|
46 |
+
- Accuracy: 0.6704
|
47 |
+
- Precision: 0.6905
|
48 |
+
- Recall: 0.6573
|
49 |
+
- F1: 0.6614
|
50 |
- Roc-auc: None
|
51 |
|
52 |
## Model description
|
|
|
66 |
### Training hyperparameters
|
67 |
|
68 |
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 1e-05
|
70 |
+
- train_batch_size: 12
|
71 |
+
- eval_batch_size: 6
|
72 |
- seed: 42
|
73 |
- gradient_accumulation_steps: 4
|
74 |
+
- total_train_batch_size: 48
|
75 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
76 |
- lr_scheduler_type: linear
|
77 |
- lr_scheduler_warmup_ratio: 0.5
|
|
|
82 |
|
83 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc-auc |
|
84 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:|
|
85 |
+
| 0.7619 | 0.2051 | 100 | 0.7516 | 0.4035 | 0.4054 | 0.3432 | 0.2112 | None |
|
86 |
+
| 0.6854 | 0.4103 | 200 | 0.6178 | 0.5138 | 0.6335 | 0.4817 | 0.4125 | None |
|
87 |
+
| 0.5066 | 0.6154 | 300 | 0.5008 | 0.6231 | 0.6986 | 0.5986 | 0.5812 | None |
|
88 |
+
| 0.4635 | 0.8205 | 400 | 0.4840 | 0.6331 | 0.6968 | 0.6098 | 0.5959 | None |
|
89 |
+
| 0.4525 | 1.0256 | 500 | 0.5023 | 0.6469 | 0.6885 | 0.6255 | 0.6287 | None |
|
90 |
+
| 0.4164 | 1.2308 | 600 | 0.5023 | 0.6719 | 0.6784 | 0.6697 | 0.6730 | None |
|
91 |
+
| 0.3798 | 1.4359 | 700 | 0.4758 | 0.6412 | 0.6931 | 0.6192 | 0.6161 | None |
|
92 |
+
| 0.4174 | 1.6410 | 800 | 0.4708 | 0.66 | 0.6998 | 0.6395 | 0.6410 | None |
|
93 |
+
| 0.4212 | 1.8462 | 900 | 0.4717 | 0.6796 | 0.6951 | 0.6696 | 0.6758 | None |
|
94 |
+
| 0.3413 | 2.0513 | 1000 | 0.5100 | 0.6769 | 0.6904 | 0.6666 | 0.6699 | None |
|
95 |
+
| 0.2757 | 2.2564 | 1100 | 0.5297 | 0.6735 | 0.6892 | 0.6630 | 0.6682 | None |
|
96 |
+
| 0.2894 | 2.4615 | 1200 | 0.5221 | 0.6704 | 0.6905 | 0.6573 | 0.6614 | None |
|
97 |
|
98 |
|
99 |
### Framework versions
|