mirekphd commited on
Commit
7a400ed
·
1 Parent(s): d7b6eaf

Added gte-Qwen2-1.5B-instruct-F32 GGUF model files.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ gte-Qwen2-1.5B-instruct-F32-00001-of-00002.gguf filter=lfs diff=lfs merge=lfs -text
37
+ gte-Qwen2-1.5B-instruct-F32-00002-of-00002.gguf filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - mteb
4
+ - sentence-transformers
5
+ - transformers
6
+ - Qwen2
7
+ - sentence-similarity
8
+ - llama-cpp
9
+ license: apache-2.0
10
+ ---
11
+ ## This version
12
+
13
+ This model was converted from the 32-bit original safetensors format to a (lossless in this case) **32-bit GGUF format (`f32`)** from **[`Alibaba-NLP/gte-Qwen2-1.5B-instruct`](https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct)** using `llama-quantize` built from [`llama.cpp`](https://github.com/ggerganov/llama.cpp).
14
+
15
+ Custom conversion script settings:
16
+ ```json
17
+ "gte-Qwen2-1.5B-instruct": {
18
+ "model_name": "gte-Qwen2-1.5B-instruct",
19
+ "hq_quant_type": "f32",
20
+ "final_quant_type": "",
21
+ "produce_final_quant": false,
22
+ "parts_num": 2,
23
+ "max_shard_size_gb": 4,
24
+ "numexpr_max_thread": 8
25
+ }
26
+ ```
27
+ Please refer to the [original model card](https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct) for more details on the unquantized model, including its metrics, which may be different (typically slightly worse) for this quantized version.
28
+
29
+
30
+ ## gte-Qwen2-1.5B-instruct
31
+
32
+ **gte-Qwen2-1.5B-instruct** is the latest model in the gte (General Text Embedding) model family. The model is built on [Qwen2-1.5B](https://huggingface.co/Qwen/Qwen2-1.5B) LLM model and use the same training data and strategies as the [gte-Qwen2-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) model.
33
+
34
+ The model incorporates several key advancements:
35
+
36
+ - Integration of bidirectional attention mechanisms, enriching its contextual understanding.
37
+ - Instruction tuning, applied solely on the query side for streamlined efficiency
38
+ - Comprehensive training across a vast, multilingual text corpus spanning diverse domains and scenarios. This training leverages both weakly supervised and supervised data, ensuring the model's applicability across numerous languages and a wide array of downstream tasks.
39
+ ## Model Information
40
+ - Model Type: GTE (General Text Embeddings)
41
+ - Model Size: 1.5B
42
+ - Embedding Dimension: 1536
43
+ - Context Window: 131072
44
+ ### Supported languages
45
+ - North America: English
46
+ - Western Europe: German, French, Spanish, Portuguese, Italian, Dutch
47
+ - Eastern & Central Europe: Russian, Czech, Polish
48
+ - Middle East: Arabic, Persian, Hebrew, Turkish
49
+ - Eastern Asia: Chinese, Japanese, Korean
50
+ - South-Eastern Asia: Vietnamese, Thai, Indonesian, Malay, Lao, Burmese, Cebuano, Khmer, Tagalog
51
+ - Southern Asia: Hindi, Bengali, Urdu
52
+ - [[source](https://qwenlm.github.io/blog/qwen2/)]
53
+ ### Details
54
+ ```
55
+ llama_model_loader: - kv 0: general.architecture str = qwen2
56
+ llama_model_loader: - kv 1: general.type str = model
57
+ llama_model_loader: - kv 2: general.name str = gte-Qwen2-1.5B-instruct
58
+ llama_model_loader: - kv 3: general.finetune str = instruct
59
+ llama_model_loader: - kv 4: general.basename str = gte-Qwen2
60
+ llama_model_loader: - kv 5: general.size_label str = 1.5B
61
+ llama_model_loader: - kv 6: general.license str = apache-2.0
62
+ llama_model_loader: - kv 7: general.tags arr[str,5] = ["mteb", "sentence-transformers", "tr...
63
+ llama_model_loader: - kv 8: qwen2.block_count u32 = 28
64
+ llama_model_loader: - kv 9: qwen2.context_length u32 = 131072
65
+ llama_model_loader: - kv 10: qwen2.embedding_length u32 = 1536
66
+ llama_model_loader: - kv 11: qwen2.feed_forward_length u32 = 8960
67
+ llama_model_loader: - kv 12: qwen2.attention.head_count u32 = 12
68
+ llama_model_loader: - kv 13: qwen2.attention.head_count_kv u32 = 2
69
+ llama_model_loader: - kv 14: qwen2.rope.freq_base f32 = 1000000.000000
70
+ llama_model_loader: - kv 15: qwen2.attention.layer_norm_rms_epsilon f32 = 0.000001
71
+ llama_model_loader: - kv 16: general.file_type u32 = 0
72
+ llama_model_loader: - kv 17: tokenizer.ggml.model str = gpt2
73
+ llama_model_loader: - kv 18: tokenizer.ggml.pre str = qwen2
74
+ llama_model_loader: - kv 19: tokenizer.ggml.tokens arr[str,151646] = ["!", "\"", "#", "$", "%", "&", "'", ...
75
+ llama_model_loader: - kv 20: tokenizer.ggml.token_type arr[i32,151646] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
76
+ llama_model_loader: - kv 21: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
77
+ llama_model_loader: - kv 22: tokenizer.ggml.eos_token_id u32 = 151643
78
+ llama_model_loader: - kv 23: tokenizer.ggml.padding_token_id u32 = 151643
79
+ llama_model_loader: - kv 24: tokenizer.ggml.bos_token_id u32 = 151643
80
+ llama_model_loader: - kv 25: tokenizer.ggml.add_eos_token bool = true
81
+ llama_model_loader: - kv 26: tokenizer.chat_template str = {% for message in messages %}{{'<|im_...
82
+ llama_model_loader: - kv 27: general.quantization_version u32 = 2
83
+ llama_model_loader: - kv 28: split.no u16 = 0
84
+ llama_model_loader: - kv 29: split.count u16 = 2
85
+ llama_model_loader: - kv 30: split.tensors.count i32 = 339
86
+ llama_model_loader: - type f32: 339 tensors
87
+ llm_load_vocab: special tokens cache size = 3
88
+ llm_load_vocab: token to piece cache size = 0.9308 MB
89
+ llm_load_print_meta: format = GGUF V3 (latest)
90
+ llm_load_print_meta: arch = qwen2
91
+ llm_load_print_meta: vocab type = BPE
92
+ llm_load_print_meta: n_vocab = 151646
93
+ llm_load_print_meta: n_merges = 151387
94
+ llm_load_print_meta: vocab_only = 0
95
+ llm_load_print_meta: n_ctx_train = 131072
96
+ llm_load_print_meta: n_embd = 1536
97
+ llm_load_print_meta: n_layer = 28
98
+ llm_load_print_meta: n_head = 12
99
+ llm_load_print_meta: n_head_kv = 2
100
+ llm_load_print_meta: n_rot = 128
101
+ llm_load_print_meta: n_swa = 0
102
+ llm_load_print_meta: n_embd_head_k = 128
103
+ llm_load_print_meta: n_embd_head_v = 128
104
+ llm_load_print_meta: n_gqa = 6
105
+ llm_load_print_meta: n_embd_k_gqa = 256
106
+ llm_load_print_meta: n_embd_v_gqa = 256
107
+ llm_load_print_meta: f_norm_eps = 0.0e+00
108
+ llm_load_print_meta: f_norm_rms_eps = 1.0e-06
109
+ llm_load_print_meta: f_clamp_kqv = 0.0e+00
110
+ llm_load_print_meta: f_max_alibi_bias = 0.0e+00
111
+ llm_load_print_meta: f_logit_scale = 0.0e+00
112
+ llm_load_print_meta: n_ff = 8960
113
+ llm_load_print_meta: n_expert = 0
114
+ llm_load_print_meta: n_expert_used = 0
115
+ llm_load_print_meta: causal attn = 1
116
+ llm_load_print_meta: pooling type = 0
117
+ llm_load_print_meta: rope type = 2
118
+ llm_load_print_meta: rope scaling = linear
119
+ llm_load_print_meta: freq_base_train = 1000000.0
120
+ llm_load_print_meta: freq_scale_train = 1
121
+ llm_load_print_meta: n_ctx_orig_yarn = 131072
122
+ llm_load_print_meta: rope_finetuned = unknown
123
+ llm_load_print_meta: ssm_d_conv = 0
124
+ llm_load_print_meta: ssm_d_inner = 0
125
+ llm_load_print_meta: ssm_d_state = 0
126
+ llm_load_print_meta: ssm_dt_rank = 0
127
+ llm_load_print_meta: ssm_dt_b_c_rms = 0
128
+ llm_load_print_meta: model type = 1.5B
129
+ llm_load_print_meta: model ftype = all F32
130
+ llm_load_print_meta: model params = 1.78 B
131
+ llm_load_print_meta: model size = 6.62 GiB (32.00 BPW)
132
+ llm_load_print_meta: general.name = gte-Qwen2-1.5B-instruct
133
+ llm_load_print_meta: BOS token = 151643 '<|endoftext|>'
134
+ llm_load_print_meta: EOS token = 151643 '<|endoftext|>'
135
+ llm_load_print_meta: EOT token = 151645 '<|im_end|>'
136
+ llm_load_print_meta: PAD token = 151643 '<|endoftext|>'
137
+ llm_load_print_meta: LF token = 148848 'ÄĬ'
138
+ llm_load_print_meta: EOG token = 151643 '<|endoftext|>'
139
+ llm_load_print_meta: EOG token = 151645 '<|im_end|>'
140
+ llm_load_print_meta: max token length = 256
141
+ llm_load_tensors: CPU_Mapped model buffer size = 3797.36 MiB
142
+ llm_load_tensors: CPU_Mapped model buffer size = 2978.30 MiB
143
+ ............................................................................
144
+ llama_new_context_with_model: n_seq_max = 1
145
+ llama_new_context_with_model: n_ctx = 131072
146
+ llama_new_context_with_model: n_ctx_per_seq = 131072
147
+ llama_new_context_with_model: n_batch = 2048
148
+ llama_new_context_with_model: n_ubatch = 512
149
+ llama_new_context_with_model: flash_attn = 0
150
+ llama_new_context_with_model: freq_base = 1000000.0
151
+ llama_new_context_with_model: freq_scale = 1
152
+ llama_kv_cache_init: CPU KV buffer size = 3584.00 MiB
153
+ llama_new_context_with_model: KV self size = 3584.00 MiB, K (f16): 1792.00 MiB, V (f16): 1792.00 MiB
154
+ llama_new_context_with_model: CPU output buffer size = 0.01 MiB
155
+ llama_new_context_with_model: CPU compute buffer size = 3340.01 MiB
156
+ llama_new_context_with_model: graph nodes = 986
157
+ llama_new_context_with_model: graph splits = 1
158
+ ```
159
+
160
+ ## Usage
161
+
162
+ ### Sentence Transformers
163
+
164
+ ### Transformers
165
+
166
+ ## Inference
167
+
168
+ ### Using `llama.cpp` to get embeddings in CPU and/or GPU
169
+ First [build](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md) or [install](https://github.com/ggerganov/llama.cpp/blob/master/docs/install.md) **`llama-server`** binary from [`llama.cpp`](https://github.com/ggerganov/llama.cpp), preferably with GPU support.
170
+ ### CLI
171
+ ### Server
172
+ ```bash
173
+ # using remote HF repo address (with model file(s) to be downloaded and cached locally)
174
+ $ llama-server --hf-repo mirekphd/gte-Qwen2-1.5B-instruct-F32 --hf-file gte-Qwen2-1.5B-instruct-F32-00001-of-00002.gguf --n-gpu-layers 0 --ctx-size 131072 --embeddings
175
+
176
+ # using a previously downloaded local model file(s)
177
+ $ llama-server --model <path-to-hf-models>/mirekphd/gte-Qwen2-1.5B-instruct-F32/gte-Qwen2-1.5B-instruct-F32-00001-of-00002.gguf --n-gpu-layers 0 --ctx-size 131072 --embeddings
178
+ ```
179
+
180
+ ## Evaluation
181
+
182
+ ### MTEB & C-MTEB
183
+
184
+ ## Cloud API Services
185
+
186
+ ## Citation
187
+ If you find our paper or models helpful, please consider cite:
188
+
189
+ ```
190
+ @article{li2023towards,
191
+ title={Towards general text embeddings with multi-stage contrastive learning},
192
+ author={Li, Zehan and Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan},
193
+ journal={arXiv preprint arXiv:2308.03281},
194
+ year={2023}
195
+ }
196
+ ```
gte-Qwen2-1.5B-instruct-F32-00001-of-00002.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5896c4aac5adbb5fb018479bf64e119e745327f90f7a1459fc03ecf2784e6cf0
3
+ size 3987751296
gte-Qwen2-1.5B-instruct-F32-00002-of-00002.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9dfb9ca7b14458bb29de7a5bf0e383b1d6f15db9f45931c9c969f624dcbf6f61
3
+ size 3122979040