Added gte-Qwen2-1.5B-instruct-F32 GGUF model files.
Browse files
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
gte-Qwen2-1.5B-instruct-F32-00001-of-00002.gguf filter=lfs diff=lfs merge=lfs -text
|
37 |
+
gte-Qwen2-1.5B-instruct-F32-00002-of-00002.gguf filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- mteb
|
4 |
+
- sentence-transformers
|
5 |
+
- transformers
|
6 |
+
- Qwen2
|
7 |
+
- sentence-similarity
|
8 |
+
- llama-cpp
|
9 |
+
license: apache-2.0
|
10 |
+
---
|
11 |
+
## This version
|
12 |
+
|
13 |
+
This model was converted from the 32-bit original safetensors format to a (lossless in this case) **32-bit GGUF format (`f32`)** from **[`Alibaba-NLP/gte-Qwen2-1.5B-instruct`](https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct)** using `llama-quantize` built from [`llama.cpp`](https://github.com/ggerganov/llama.cpp).
|
14 |
+
|
15 |
+
Custom conversion script settings:
|
16 |
+
```json
|
17 |
+
"gte-Qwen2-1.5B-instruct": {
|
18 |
+
"model_name": "gte-Qwen2-1.5B-instruct",
|
19 |
+
"hq_quant_type": "f32",
|
20 |
+
"final_quant_type": "",
|
21 |
+
"produce_final_quant": false,
|
22 |
+
"parts_num": 2,
|
23 |
+
"max_shard_size_gb": 4,
|
24 |
+
"numexpr_max_thread": 8
|
25 |
+
}
|
26 |
+
```
|
27 |
+
Please refer to the [original model card](https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct) for more details on the unquantized model, including its metrics, which may be different (typically slightly worse) for this quantized version.
|
28 |
+
|
29 |
+
|
30 |
+
## gte-Qwen2-1.5B-instruct
|
31 |
+
|
32 |
+
**gte-Qwen2-1.5B-instruct** is the latest model in the gte (General Text Embedding) model family. The model is built on [Qwen2-1.5B](https://huggingface.co/Qwen/Qwen2-1.5B) LLM model and use the same training data and strategies as the [gte-Qwen2-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) model.
|
33 |
+
|
34 |
+
The model incorporates several key advancements:
|
35 |
+
|
36 |
+
- Integration of bidirectional attention mechanisms, enriching its contextual understanding.
|
37 |
+
- Instruction tuning, applied solely on the query side for streamlined efficiency
|
38 |
+
- Comprehensive training across a vast, multilingual text corpus spanning diverse domains and scenarios. This training leverages both weakly supervised and supervised data, ensuring the model's applicability across numerous languages and a wide array of downstream tasks.
|
39 |
+
## Model Information
|
40 |
+
- Model Type: GTE (General Text Embeddings)
|
41 |
+
- Model Size: 1.5B
|
42 |
+
- Embedding Dimension: 1536
|
43 |
+
- Context Window: 131072
|
44 |
+
### Supported languages
|
45 |
+
- North America: English
|
46 |
+
- Western Europe: German, French, Spanish, Portuguese, Italian, Dutch
|
47 |
+
- Eastern & Central Europe: Russian, Czech, Polish
|
48 |
+
- Middle East: Arabic, Persian, Hebrew, Turkish
|
49 |
+
- Eastern Asia: Chinese, Japanese, Korean
|
50 |
+
- South-Eastern Asia: Vietnamese, Thai, Indonesian, Malay, Lao, Burmese, Cebuano, Khmer, Tagalog
|
51 |
+
- Southern Asia: Hindi, Bengali, Urdu
|
52 |
+
- [[source](https://qwenlm.github.io/blog/qwen2/)]
|
53 |
+
### Details
|
54 |
+
```
|
55 |
+
llama_model_loader: - kv 0: general.architecture str = qwen2
|
56 |
+
llama_model_loader: - kv 1: general.type str = model
|
57 |
+
llama_model_loader: - kv 2: general.name str = gte-Qwen2-1.5B-instruct
|
58 |
+
llama_model_loader: - kv 3: general.finetune str = instruct
|
59 |
+
llama_model_loader: - kv 4: general.basename str = gte-Qwen2
|
60 |
+
llama_model_loader: - kv 5: general.size_label str = 1.5B
|
61 |
+
llama_model_loader: - kv 6: general.license str = apache-2.0
|
62 |
+
llama_model_loader: - kv 7: general.tags arr[str,5] = ["mteb", "sentence-transformers", "tr...
|
63 |
+
llama_model_loader: - kv 8: qwen2.block_count u32 = 28
|
64 |
+
llama_model_loader: - kv 9: qwen2.context_length u32 = 131072
|
65 |
+
llama_model_loader: - kv 10: qwen2.embedding_length u32 = 1536
|
66 |
+
llama_model_loader: - kv 11: qwen2.feed_forward_length u32 = 8960
|
67 |
+
llama_model_loader: - kv 12: qwen2.attention.head_count u32 = 12
|
68 |
+
llama_model_loader: - kv 13: qwen2.attention.head_count_kv u32 = 2
|
69 |
+
llama_model_loader: - kv 14: qwen2.rope.freq_base f32 = 1000000.000000
|
70 |
+
llama_model_loader: - kv 15: qwen2.attention.layer_norm_rms_epsilon f32 = 0.000001
|
71 |
+
llama_model_loader: - kv 16: general.file_type u32 = 0
|
72 |
+
llama_model_loader: - kv 17: tokenizer.ggml.model str = gpt2
|
73 |
+
llama_model_loader: - kv 18: tokenizer.ggml.pre str = qwen2
|
74 |
+
llama_model_loader: - kv 19: tokenizer.ggml.tokens arr[str,151646] = ["!", "\"", "#", "$", "%", "&", "'", ...
|
75 |
+
llama_model_loader: - kv 20: tokenizer.ggml.token_type arr[i32,151646] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
|
76 |
+
llama_model_loader: - kv 21: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
|
77 |
+
llama_model_loader: - kv 22: tokenizer.ggml.eos_token_id u32 = 151643
|
78 |
+
llama_model_loader: - kv 23: tokenizer.ggml.padding_token_id u32 = 151643
|
79 |
+
llama_model_loader: - kv 24: tokenizer.ggml.bos_token_id u32 = 151643
|
80 |
+
llama_model_loader: - kv 25: tokenizer.ggml.add_eos_token bool = true
|
81 |
+
llama_model_loader: - kv 26: tokenizer.chat_template str = {% for message in messages %}{{'<|im_...
|
82 |
+
llama_model_loader: - kv 27: general.quantization_version u32 = 2
|
83 |
+
llama_model_loader: - kv 28: split.no u16 = 0
|
84 |
+
llama_model_loader: - kv 29: split.count u16 = 2
|
85 |
+
llama_model_loader: - kv 30: split.tensors.count i32 = 339
|
86 |
+
llama_model_loader: - type f32: 339 tensors
|
87 |
+
llm_load_vocab: special tokens cache size = 3
|
88 |
+
llm_load_vocab: token to piece cache size = 0.9308 MB
|
89 |
+
llm_load_print_meta: format = GGUF V3 (latest)
|
90 |
+
llm_load_print_meta: arch = qwen2
|
91 |
+
llm_load_print_meta: vocab type = BPE
|
92 |
+
llm_load_print_meta: n_vocab = 151646
|
93 |
+
llm_load_print_meta: n_merges = 151387
|
94 |
+
llm_load_print_meta: vocab_only = 0
|
95 |
+
llm_load_print_meta: n_ctx_train = 131072
|
96 |
+
llm_load_print_meta: n_embd = 1536
|
97 |
+
llm_load_print_meta: n_layer = 28
|
98 |
+
llm_load_print_meta: n_head = 12
|
99 |
+
llm_load_print_meta: n_head_kv = 2
|
100 |
+
llm_load_print_meta: n_rot = 128
|
101 |
+
llm_load_print_meta: n_swa = 0
|
102 |
+
llm_load_print_meta: n_embd_head_k = 128
|
103 |
+
llm_load_print_meta: n_embd_head_v = 128
|
104 |
+
llm_load_print_meta: n_gqa = 6
|
105 |
+
llm_load_print_meta: n_embd_k_gqa = 256
|
106 |
+
llm_load_print_meta: n_embd_v_gqa = 256
|
107 |
+
llm_load_print_meta: f_norm_eps = 0.0e+00
|
108 |
+
llm_load_print_meta: f_norm_rms_eps = 1.0e-06
|
109 |
+
llm_load_print_meta: f_clamp_kqv = 0.0e+00
|
110 |
+
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
|
111 |
+
llm_load_print_meta: f_logit_scale = 0.0e+00
|
112 |
+
llm_load_print_meta: n_ff = 8960
|
113 |
+
llm_load_print_meta: n_expert = 0
|
114 |
+
llm_load_print_meta: n_expert_used = 0
|
115 |
+
llm_load_print_meta: causal attn = 1
|
116 |
+
llm_load_print_meta: pooling type = 0
|
117 |
+
llm_load_print_meta: rope type = 2
|
118 |
+
llm_load_print_meta: rope scaling = linear
|
119 |
+
llm_load_print_meta: freq_base_train = 1000000.0
|
120 |
+
llm_load_print_meta: freq_scale_train = 1
|
121 |
+
llm_load_print_meta: n_ctx_orig_yarn = 131072
|
122 |
+
llm_load_print_meta: rope_finetuned = unknown
|
123 |
+
llm_load_print_meta: ssm_d_conv = 0
|
124 |
+
llm_load_print_meta: ssm_d_inner = 0
|
125 |
+
llm_load_print_meta: ssm_d_state = 0
|
126 |
+
llm_load_print_meta: ssm_dt_rank = 0
|
127 |
+
llm_load_print_meta: ssm_dt_b_c_rms = 0
|
128 |
+
llm_load_print_meta: model type = 1.5B
|
129 |
+
llm_load_print_meta: model ftype = all F32
|
130 |
+
llm_load_print_meta: model params = 1.78 B
|
131 |
+
llm_load_print_meta: model size = 6.62 GiB (32.00 BPW)
|
132 |
+
llm_load_print_meta: general.name = gte-Qwen2-1.5B-instruct
|
133 |
+
llm_load_print_meta: BOS token = 151643 '<|endoftext|>'
|
134 |
+
llm_load_print_meta: EOS token = 151643 '<|endoftext|>'
|
135 |
+
llm_load_print_meta: EOT token = 151645 '<|im_end|>'
|
136 |
+
llm_load_print_meta: PAD token = 151643 '<|endoftext|>'
|
137 |
+
llm_load_print_meta: LF token = 148848 'ÄĬ'
|
138 |
+
llm_load_print_meta: EOG token = 151643 '<|endoftext|>'
|
139 |
+
llm_load_print_meta: EOG token = 151645 '<|im_end|>'
|
140 |
+
llm_load_print_meta: max token length = 256
|
141 |
+
llm_load_tensors: CPU_Mapped model buffer size = 3797.36 MiB
|
142 |
+
llm_load_tensors: CPU_Mapped model buffer size = 2978.30 MiB
|
143 |
+
............................................................................
|
144 |
+
llama_new_context_with_model: n_seq_max = 1
|
145 |
+
llama_new_context_with_model: n_ctx = 131072
|
146 |
+
llama_new_context_with_model: n_ctx_per_seq = 131072
|
147 |
+
llama_new_context_with_model: n_batch = 2048
|
148 |
+
llama_new_context_with_model: n_ubatch = 512
|
149 |
+
llama_new_context_with_model: flash_attn = 0
|
150 |
+
llama_new_context_with_model: freq_base = 1000000.0
|
151 |
+
llama_new_context_with_model: freq_scale = 1
|
152 |
+
llama_kv_cache_init: CPU KV buffer size = 3584.00 MiB
|
153 |
+
llama_new_context_with_model: KV self size = 3584.00 MiB, K (f16): 1792.00 MiB, V (f16): 1792.00 MiB
|
154 |
+
llama_new_context_with_model: CPU output buffer size = 0.01 MiB
|
155 |
+
llama_new_context_with_model: CPU compute buffer size = 3340.01 MiB
|
156 |
+
llama_new_context_with_model: graph nodes = 986
|
157 |
+
llama_new_context_with_model: graph splits = 1
|
158 |
+
```
|
159 |
+
|
160 |
+
## Usage
|
161 |
+
|
162 |
+
### Sentence Transformers
|
163 |
+
|
164 |
+
### Transformers
|
165 |
+
|
166 |
+
## Inference
|
167 |
+
|
168 |
+
### Using `llama.cpp` to get embeddings in CPU and/or GPU
|
169 |
+
First [build](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md) or [install](https://github.com/ggerganov/llama.cpp/blob/master/docs/install.md) **`llama-server`** binary from [`llama.cpp`](https://github.com/ggerganov/llama.cpp), preferably with GPU support.
|
170 |
+
### CLI
|
171 |
+
### Server
|
172 |
+
```bash
|
173 |
+
# using remote HF repo address (with model file(s) to be downloaded and cached locally)
|
174 |
+
$ llama-server --hf-repo mirekphd/gte-Qwen2-1.5B-instruct-F32 --hf-file gte-Qwen2-1.5B-instruct-F32-00001-of-00002.gguf --n-gpu-layers 0 --ctx-size 131072 --embeddings
|
175 |
+
|
176 |
+
# using a previously downloaded local model file(s)
|
177 |
+
$ llama-server --model <path-to-hf-models>/mirekphd/gte-Qwen2-1.5B-instruct-F32/gte-Qwen2-1.5B-instruct-F32-00001-of-00002.gguf --n-gpu-layers 0 --ctx-size 131072 --embeddings
|
178 |
+
```
|
179 |
+
|
180 |
+
## Evaluation
|
181 |
+
|
182 |
+
### MTEB & C-MTEB
|
183 |
+
|
184 |
+
## Cloud API Services
|
185 |
+
|
186 |
+
## Citation
|
187 |
+
If you find our paper or models helpful, please consider cite:
|
188 |
+
|
189 |
+
```
|
190 |
+
@article{li2023towards,
|
191 |
+
title={Towards general text embeddings with multi-stage contrastive learning},
|
192 |
+
author={Li, Zehan and Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan},
|
193 |
+
journal={arXiv preprint arXiv:2308.03281},
|
194 |
+
year={2023}
|
195 |
+
}
|
196 |
+
```
|
gte-Qwen2-1.5B-instruct-F32-00001-of-00002.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5896c4aac5adbb5fb018479bf64e119e745327f90f7a1459fc03ecf2784e6cf0
|
3 |
+
size 3987751296
|
gte-Qwen2-1.5B-instruct-F32-00002-of-00002.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9dfb9ca7b14458bb29de7a5bf0e383b1d6f15db9f45931c9c969f624dcbf6f61
|
3 |
+
size 3122979040
|