Some minor readme fixes (#1)
Browse files- Some minor readme fixes (5ae3eec6fee052d4155f2969952bc22cdb293ddc)
Co-authored-by: based <[email protected]>
README.md
CHANGED
@@ -37,22 +37,22 @@ pipeline_tag: image-text-to-text
|
|
37 |
|
38 |
# Mistral-Small-3.2-24B-Instruct-2506
|
39 |
|
40 |
-
Mistral-Small-3.2-24B-Instruct-2506 is a minor update of [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-
|
41 |
|
42 |
Small-3.2 improves in the following categories:
|
43 |
- **Instruction following**: Small-3.2 is better at following precise instructions
|
44 |
- **Repetition errors**: Small-3.2 produces less infinite generations or repetitive answers
|
45 |
- **Function calling**: Small-3.2's function calling template is more robust (see [here](https://github.com/mistralai/mistral-common/blob/535b4d0a0fc94674ea17db6cf8dc2079b81cbcfa/src/mistral_common/tokens/tokenizers/instruct.py#L778) and [examples](#function-calling))
|
46 |
|
47 |
-
In all other categories Small-3.2 should match or slightly improve compared to [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-
|
48 |
|
49 |
## Key Features
|
50 |
-
- same as [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-
|
51 |
|
52 |
## Benchmark Results
|
53 |
|
54 |
-
We compare Mistral-Small-3.2-24B to [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-
|
55 |
-
For more comparison against other models of similar size, please check [Mistral-Small-3.1's Benchmarks'](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-
|
56 |
|
57 |
### Text
|
58 |
|
@@ -65,7 +65,7 @@ For more comparison against other models of similar size, please check [Mistral-
|
|
65 |
|
66 |
#### Infinite Generations
|
67 |
|
68 |
-
Small 3.2 reduces
|
69 |
|
70 |
| Model | Infinite Generations (Internal; Lower is better) |
|
71 |
|-------|-------|
|
@@ -95,7 +95,7 @@ The model can be used with the following frameworks;
|
|
95 |
|
96 |
**Note 1**: We recommend using a relatively low temperature, such as `temperature=0.15`.
|
97 |
|
98 |
-
**Note 2**: Make sure to add a system prompt to the model to best
|
99 |
|
100 |
### vLLM (recommended)
|
101 |
|
@@ -120,7 +120,7 @@ You can also make use of a ready-to-go [docker image](https://github.com/vllm-pr
|
|
120 |
|
121 |
#### Serve
|
122 |
|
123 |
-
We
|
124 |
|
125 |
1. Spin up a server:
|
126 |
|
@@ -136,7 +136,7 @@ vllm serve mistralai/Mistral-Small-3.2-24B-Instruct-2506 --tokenizer_mode mistra
|
|
136 |
|
137 |
#### Vision reasoning
|
138 |
|
139 |
-
|
140 |
|
141 |
<details>
|
142 |
<summary>Python snippet</summary>
|
|
|
37 |
|
38 |
# Mistral-Small-3.2-24B-Instruct-2506
|
39 |
|
40 |
+
Mistral-Small-3.2-24B-Instruct-2506 is a minor update of [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503).
|
41 |
|
42 |
Small-3.2 improves in the following categories:
|
43 |
- **Instruction following**: Small-3.2 is better at following precise instructions
|
44 |
- **Repetition errors**: Small-3.2 produces less infinite generations or repetitive answers
|
45 |
- **Function calling**: Small-3.2's function calling template is more robust (see [here](https://github.com/mistralai/mistral-common/blob/535b4d0a0fc94674ea17db6cf8dc2079b81cbcfa/src/mistral_common/tokens/tokenizers/instruct.py#L778) and [examples](#function-calling))
|
46 |
|
47 |
+
In all other categories Small-3.2 should match or slightly improve compared to [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503).
|
48 |
|
49 |
## Key Features
|
50 |
+
- same as [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503#key-features)
|
51 |
|
52 |
## Benchmark Results
|
53 |
|
54 |
+
We compare Mistral-Small-3.2-24B to [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503).
|
55 |
+
For more comparison against other models of similar size, please check [Mistral-Small-3.1's Benchmarks'](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503#benchmark-results)
|
56 |
|
57 |
### Text
|
58 |
|
|
|
65 |
|
66 |
#### Infinite Generations
|
67 |
|
68 |
+
Small 3.2 reduces infinite generations by 2x on challenging, long and repetitive prompts.
|
69 |
|
70 |
| Model | Infinite Generations (Internal; Lower is better) |
|
71 |
|-------|-------|
|
|
|
95 |
|
96 |
**Note 1**: We recommend using a relatively low temperature, such as `temperature=0.15`.
|
97 |
|
98 |
+
**Note 2**: Make sure to add a system prompt to the model to best tailor it to your needs. If you want to use the model as a general assistant, we recommend to use the one provided in the [SYSTEM_PROMPT.txt](https://huggingface.co/mistralai/Mistral-Small-3.2-24B-Instruct-2506/blob/main/SYSTEM_PROMPT.txt) file.
|
99 |
|
100 |
### vLLM (recommended)
|
101 |
|
|
|
120 |
|
121 |
#### Serve
|
122 |
|
123 |
+
We recommend that you use Mistral-Small-3.2-24B-Instruct-2506 in a server/client setting.
|
124 |
|
125 |
1. Spin up a server:
|
126 |
|
|
|
136 |
|
137 |
#### Vision reasoning
|
138 |
|
139 |
+
Leverage the vision capabilities of Mistral-Small-3.2-24B-Instruct-2506 to make the best choice given a scenario, go catch them all !
|
140 |
|
141 |
<details>
|
142 |
<summary>Python snippet</summary>
|