Update README.md
Browse files
README.md
CHANGED
|
@@ -1,22 +1,21 @@
|
|
| 1 |
---
|
| 2 |
-
base_model: mistralai/Mistral-7B-v0.3
|
| 3 |
extra_gated_description: >-
|
| 4 |
If you want to learn more about how we process your personal data, please read
|
| 5 |
our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
|
| 6 |
---
|
| 7 |
|
| 8 |
-
# Model Card for Mistral-
|
| 9 |
|
| 10 |
-
|
| 11 |
|
| 12 |
-
|
| 13 |
-
-
|
| 14 |
-
- Supports v3 Tokenizer
|
| 15 |
- Supports function calling
|
|
|
|
| 16 |
|
| 17 |
## Installation
|
| 18 |
|
| 19 |
-
It is recommended to use `mistralai/Mistral-
|
| 20 |
|
| 21 |
```
|
| 22 |
pip install mistral_inference
|
|
@@ -28,10 +27,10 @@ pip install mistral_inference
|
|
| 28 |
from huggingface_hub import snapshot_download
|
| 29 |
from pathlib import Path
|
| 30 |
|
| 31 |
-
mistral_models_path = Path.home().joinpath('mistral_models', '
|
| 32 |
mistral_models_path.mkdir(parents=True, exist_ok=True)
|
| 33 |
|
| 34 |
-
snapshot_download(repo_id="mistralai/Mistral-
|
| 35 |
```
|
| 36 |
|
| 37 |
### Chat
|
|
@@ -39,7 +38,7 @@ snapshot_download(repo_id="mistralai/Mistral-7B-Instruct-v0.3", allow_patterns=[
|
|
| 39 |
After installing `mistral_inference`, a `mistral-chat` CLI command should be available in your environment. You can chat with the model using
|
| 40 |
|
| 41 |
```
|
| 42 |
-
mistral-chat $HOME/mistral_models/
|
| 43 |
```
|
| 44 |
|
| 45 |
### Instruct following
|
|
@@ -118,77 +117,6 @@ result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])
|
|
| 118 |
print(result)
|
| 119 |
```
|
| 120 |
|
| 121 |
-
## Generate with `transformers`
|
| 122 |
-
|
| 123 |
-
If you want to use Hugging Face `transformers` to generate text, you can do something like this.
|
| 124 |
-
|
| 125 |
-
```py
|
| 126 |
-
from transformers import pipeline
|
| 127 |
-
|
| 128 |
-
messages = [
|
| 129 |
-
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
| 130 |
-
{"role": "user", "content": "Who are you?"},
|
| 131 |
-
]
|
| 132 |
-
chatbot = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.3")
|
| 133 |
-
chatbot(messages)
|
| 134 |
-
```
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
## Function calling with `transformers`
|
| 138 |
-
|
| 139 |
-
To use this example, you'll need `transformers` version 4.42.0 or higher. Please see the
|
| 140 |
-
[function calling guide](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling)
|
| 141 |
-
in the `transformers` docs for more information.
|
| 142 |
-
|
| 143 |
-
```python
|
| 144 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 145 |
-
import torch
|
| 146 |
-
|
| 147 |
-
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
| 148 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 149 |
-
|
| 150 |
-
def get_current_weather(location: str, format: str):
|
| 151 |
-
"""
|
| 152 |
-
Get the current weather
|
| 153 |
-
|
| 154 |
-
Args:
|
| 155 |
-
location: The city and state, e.g. San Francisco, CA
|
| 156 |
-
format: The temperature unit to use. Infer this from the users location. (choices: ["celsius", "fahrenheit"])
|
| 157 |
-
"""
|
| 158 |
-
pass
|
| 159 |
-
|
| 160 |
-
conversation = [{"role": "user", "content": "What's the weather like in Paris?"}]
|
| 161 |
-
tools = [get_current_weather]
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
# format and tokenize the tool use prompt
|
| 165 |
-
inputs = tokenizer.apply_chat_template(
|
| 166 |
-
conversation,
|
| 167 |
-
tools=tools,
|
| 168 |
-
add_generation_prompt=True,
|
| 169 |
-
return_dict=True,
|
| 170 |
-
return_tensors="pt",
|
| 171 |
-
)
|
| 172 |
-
|
| 173 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
|
| 174 |
-
|
| 175 |
-
inputs.to(model.device)
|
| 176 |
-
outputs = model.generate(**inputs, max_new_tokens=1000)
|
| 177 |
-
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 178 |
-
```
|
| 179 |
-
|
| 180 |
-
Note that, for reasons of space, this example does not show a complete cycle of calling a tool and adding the tool call and tool
|
| 181 |
-
results to the chat history so that the model can use them in its next generation. For a full tool calling example, please
|
| 182 |
-
see the [function calling guide](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling),
|
| 183 |
-
and note that Mistral **does** use tool call IDs, so these must be included in your tool calls and tool results. They should be
|
| 184 |
-
exactly 9 alphanumeric characters.
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
## Limitations
|
| 188 |
-
|
| 189 |
-
The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance.
|
| 190 |
-
It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
|
| 191 |
-
make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
|
| 192 |
|
| 193 |
## The Mistral AI Team
|
| 194 |
|
|
|
|
| 1 |
---
|
|
|
|
| 2 |
extra_gated_description: >-
|
| 3 |
If you want to learn more about how we process your personal data, please read
|
| 4 |
our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
|
| 5 |
---
|
| 6 |
|
| 7 |
+
# Model Card for Mistral-Small-Instruct-2409
|
| 8 |
|
| 9 |
+
Mistral-Small-Instruct-2409 is an instruct fine-tuned version with the following key characteristics:
|
| 10 |
|
| 11 |
+
- 22B parameters
|
| 12 |
+
- Vocabulary to 32768
|
|
|
|
| 13 |
- Supports function calling
|
| 14 |
+
- 128k sequence length
|
| 15 |
|
| 16 |
## Installation
|
| 17 |
|
| 18 |
+
It is recommended to use `mistralai/Mistral-Small-Instruct-2409` with [mistral-inference](https://github.com/mistralai/mistral-inference). For HF transformers code snippets, please keep scrolling.
|
| 19 |
|
| 20 |
```
|
| 21 |
pip install mistral_inference
|
|
|
|
| 27 |
from huggingface_hub import snapshot_download
|
| 28 |
from pathlib import Path
|
| 29 |
|
| 30 |
+
mistral_models_path = Path.home().joinpath('mistral_models', '22B-Instruct-Small')
|
| 31 |
mistral_models_path.mkdir(parents=True, exist_ok=True)
|
| 32 |
|
| 33 |
+
snapshot_download(repo_id="mistralai/Mistral-Small-Instruct-2409", allow_patterns=["params.json", "consolidated.safetensors", "tokenizer.model.v3"], local_dir=mistral_models_path)
|
| 34 |
```
|
| 35 |
|
| 36 |
### Chat
|
|
|
|
| 38 |
After installing `mistral_inference`, a `mistral-chat` CLI command should be available in your environment. You can chat with the model using
|
| 39 |
|
| 40 |
```
|
| 41 |
+
mistral-chat $HOME/mistral_models/22B-Instruct-Small --instruct --max_tokens 256
|
| 42 |
```
|
| 43 |
|
| 44 |
### Instruct following
|
|
|
|
| 117 |
print(result)
|
| 118 |
```
|
| 119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
## The Mistral AI Team
|
| 122 |
|