Text Generation
Transformers
English
AWQ
Quantization
Lmxyy commited on
Commit
0578552
·
verified ·
1 Parent(s): d04b17e

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: google/t5-v1_1-xxl
3
+ base_model_relation: quantized
4
+ datasets:
5
+ - mit-han-lab/svdquant-datasets
6
+ language:
7
+ - en
8
+ library_name: transformers
9
+ license: apache-2.0
10
+ pipeline_tag: text-generation
11
+ tags:
12
+ - text-generation
13
+ - AWQ
14
+ - Quantization
15
+
16
+ ---
17
+ **This repository has been migrated to https://huggingface.co/nunchaku-tech/nunchaku-t5 and will be hidden in December 2025.**
18
+
19
+ <p align="center" style="border-radius: 10px">
20
+ <img src="https://huggingface.co/datasets/nunchaku-tech/cdn/resolve/main/nunchaku/assets/nunchaku.svg" width="30%" alt="Nunchaku Logo"/>
21
+ </p>
22
+
23
+ # Model Card for nunchaku-t5
24
+
25
+ This repository contains Nunchaku-quantized versions of [T5-XXL](https://huggingface.co/google/t5-v1_1-xxl), used to encode text prompt to the embeddings. It is used to reduce the memory footprint of the model.
26
+
27
+ ## Model Details
28
+
29
+ ### Model Description
30
+
31
+ - **Developed by:** Nunchaku Team
32
+ - **Model type:** text-generation
33
+ - **License:** apache-2.0
34
+ - **Quantized from model:** [t5_v1_1_xxl](https://huggingface.co/google/t5-v1_1-xxl)
35
+
36
+ ### Model Files
37
+
38
+ - [`awq-int4-flux.1-t5xxl.safetensors`](./awq-int4-flux.1-t5xxl.safetensors): AWQ quantized W4A16 T5-XXL model for FLUX.1.
39
+
40
+
41
+ ### Model Sources
42
+
43
+ - **Inference Engine:** [nunchaku](https://github.com/nunchaku-tech/nunchaku)
44
+ - **Quantization Library:** [deepcompressor](https://github.com/nunchaku-tech/deepcompressor)
45
+ - **Paper:** [SVDQuant: Absorbing Outliers by Low-Rank Components for 4-Bit Diffusion Models](http://arxiv.org/abs/2411.05007)
46
+ - **Demo:** [svdquant.mit.edu](https://svdquant.mit.edu)
47
+
48
+ ## Usage
49
+
50
+ - Diffusers Usage: See [flux.1-dev-qencoder.py](https://github.com/nunchaku-tech/nunchaku/blob/main/examples/flux.1-dev-qencoder.py). Check our [tutorial](https://nunchaku.tech/docs/nunchaku/usage/qencoder.html) for more advanced usage.
51
+ - ComfyUI Usage: See [nunchaku-flux.1-dev-qencoder.json](https://nunchaku.tech/docs/ComfyUI-nunchaku/workflows/t2i.html#nunchaku-flux-1-dev-qencoder-json).
52
+
53
+ ## Citation
54
+
55
+ ```bibtex
56
+ @inproceedings{
57
+ li2024svdquant,
58
+ title={SVDQuant: Absorbing Outliers by Low-Rank Components for 4-Bit Diffusion Models},
59
+ author={Li*, Muyang and Lin*, Yujun and Zhang*, Zhekai and Cai, Tianle and Li, Xiuyu and Guo, Junxian and Xie, Enze and Meng, Chenlin and Zhu, Jun-Yan and Han, Song},
60
+ booktitle={The Thirteenth International Conference on Learning Representations},
61
+ year={2025}
62
+ }
63
+ @inproceedings{
64
+ lin2023awq,
65
+ title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration},
66
+ author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Chen, Wei-Ming and Wang, Wei-Chen and Xiao, Guangxuan and Dang, Xingyu and Gan, Chuang and Han, Song},
67
+ booktitle={MLSys},
68
+ year={2024}
69
+ }
70
+ ```