Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: google/t5-v1_1-xxl
|
3 |
+
base_model_relation: quantized
|
4 |
+
datasets:
|
5 |
+
- mit-han-lab/svdquant-datasets
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
library_name: transformers
|
9 |
+
license: apache-2.0
|
10 |
+
pipeline_tag: text-generation
|
11 |
+
tags:
|
12 |
+
- text-generation
|
13 |
+
- AWQ
|
14 |
+
- Quantization
|
15 |
+
|
16 |
+
---
|
17 |
+
**This repository has been migrated to https://huggingface.co/nunchaku-tech/nunchaku-t5 and will be hidden in December 2025.**
|
18 |
+
|
19 |
+
<p align="center" style="border-radius: 10px">
|
20 |
+
<img src="https://huggingface.co/datasets/nunchaku-tech/cdn/resolve/main/nunchaku/assets/nunchaku.svg" width="30%" alt="Nunchaku Logo"/>
|
21 |
+
</p>
|
22 |
+
|
23 |
+
# Model Card for nunchaku-t5
|
24 |
+
|
25 |
+
This repository contains Nunchaku-quantized versions of [T5-XXL](https://huggingface.co/google/t5-v1_1-xxl), used to encode text prompt to the embeddings. It is used to reduce the memory footprint of the model.
|
26 |
+
|
27 |
+
## Model Details
|
28 |
+
|
29 |
+
### Model Description
|
30 |
+
|
31 |
+
- **Developed by:** Nunchaku Team
|
32 |
+
- **Model type:** text-generation
|
33 |
+
- **License:** apache-2.0
|
34 |
+
- **Quantized from model:** [t5_v1_1_xxl](https://huggingface.co/google/t5-v1_1-xxl)
|
35 |
+
|
36 |
+
### Model Files
|
37 |
+
|
38 |
+
- [`awq-int4-flux.1-t5xxl.safetensors`](./awq-int4-flux.1-t5xxl.safetensors): AWQ quantized W4A16 T5-XXL model for FLUX.1.
|
39 |
+
|
40 |
+
|
41 |
+
### Model Sources
|
42 |
+
|
43 |
+
- **Inference Engine:** [nunchaku](https://github.com/nunchaku-tech/nunchaku)
|
44 |
+
- **Quantization Library:** [deepcompressor](https://github.com/nunchaku-tech/deepcompressor)
|
45 |
+
- **Paper:** [SVDQuant: Absorbing Outliers by Low-Rank Components for 4-Bit Diffusion Models](http://arxiv.org/abs/2411.05007)
|
46 |
+
- **Demo:** [svdquant.mit.edu](https://svdquant.mit.edu)
|
47 |
+
|
48 |
+
## Usage
|
49 |
+
|
50 |
+
- Diffusers Usage: See [flux.1-dev-qencoder.py](https://github.com/nunchaku-tech/nunchaku/blob/main/examples/flux.1-dev-qencoder.py). Check our [tutorial](https://nunchaku.tech/docs/nunchaku/usage/qencoder.html) for more advanced usage.
|
51 |
+
- ComfyUI Usage: See [nunchaku-flux.1-dev-qencoder.json](https://nunchaku.tech/docs/ComfyUI-nunchaku/workflows/t2i.html#nunchaku-flux-1-dev-qencoder-json).
|
52 |
+
|
53 |
+
## Citation
|
54 |
+
|
55 |
+
```bibtex
|
56 |
+
@inproceedings{
|
57 |
+
li2024svdquant,
|
58 |
+
title={SVDQuant: Absorbing Outliers by Low-Rank Components for 4-Bit Diffusion Models},
|
59 |
+
author={Li*, Muyang and Lin*, Yujun and Zhang*, Zhekai and Cai, Tianle and Li, Xiuyu and Guo, Junxian and Xie, Enze and Meng, Chenlin and Zhu, Jun-Yan and Han, Song},
|
60 |
+
booktitle={The Thirteenth International Conference on Learning Representations},
|
61 |
+
year={2025}
|
62 |
+
}
|
63 |
+
@inproceedings{
|
64 |
+
lin2023awq,
|
65 |
+
title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration},
|
66 |
+
author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Chen, Wei-Ming and Wang, Wei-Chen and Xiao, Guangxuan and Dang, Xingyu and Gan, Chuang and Han, Song},
|
67 |
+
booktitle={MLSys},
|
68 |
+
year={2024}
|
69 |
+
}
|
70 |
+
```
|