Text-to-Image
Diffusers
English
SVDQuant
SANA
Diffusion
Quantization
ICLR2025
Lmxyy commited on
Commit
03a45da
·
verified ·
1 Parent(s): b11fd73

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Efficient-Large-Model/Sana_1600M_1024px
3
+ base_model_relation: quantized
4
+ datasets:
5
+ - mit-han-lab/svdquant-datasets
6
+ language:
7
+ - en
8
+ library_name: diffusers
9
+ license: other
10
+ license_link: https://huggingface.co/Efficient-Large-Model/Sana_1600M_1024px/blob/main/LICENSE.txt
11
+ license_name: nvidia-license
12
+ pipeline_tag: text-to-image
13
+ tags:
14
+ - text-to-image
15
+ - SVDQuant
16
+ - SANA
17
+ - Diffusion
18
+ - Quantization
19
+ - ICLR2025
20
+
21
+ ---
22
+ **This repository has been deprecated and will be hidden in December 2025. Please use https://huggingface.co/nunchaku-tech/nunchaku-sana.**
23
+
24
+ <p align="center" style="border-radius: 10px">
25
+ <img src="https://huggingface.co/datasets/nunchaku-tech/cdn/resolve/main/nunchaku/assets/nunchaku.svg" width="30%" alt="Nunchaku Logo"/>
26
+ </p>
27
+
28
+ # Model Card for svdq-int4-sana-1600m
29
+
30
+ ## Model Details
31
+
32
+ ### Model Description
33
+
34
+ - **Developed by:** Nunchaku Team
35
+ - **Model type:** text-to-image
36
+ - **License:** [NVIDIA License](https://huggingface.co/Efficient-Large-Model/Sana_1600M_1024px/blob/main/LICENSE.txt)
37
+ - **Quantized from model:** [Sana_1600M_1024px](https://huggingface.co/Efficient-Large-Model/Sana_1600M_1024px)
38
+
39
+ ### Model Sources
40
+
41
+ - **Inference Engine:** [nunchaku](https://github.com/nunchaku-tech/nunchaku)
42
+ - **Quantization Library:** [deepcompressor](https://github.com/nunchaku-tech/deepcompressor)
43
+ - **Paper:** [SVDQuant: Absorbing Outliers by Low-Rank Components for 4-Bit Diffusion Models](http://arxiv.org/abs/2411.05007)
44
+ - **Demo:** [svdquant.mit.edu](https://svdquant.mit.edu)
45
+
46
+ ## Usage
47
+
48
+ See [sana1.6b.py](https://github.com/nunchaku-tech/nunchaku/blob/main/examples/sana1.6b.py).
49
+
50
+ ## Performance
51
+
52
+ ![performance](https://huggingface.co/datasets/nunchaku-tech/cdn/resolve/main/nunchaku/assets/efficiency.jpg)
53
+
54
+ ## Citation
55
+
56
+ ```bibtex
57
+ @inproceedings{
58
+ li2024svdquant,
59
+ title={SVDQuant: Absorbing Outliers by Low-Rank Components for 4-Bit Diffusion Models},
60
+ author={Li*, Muyang and Lin*, Yujun and Zhang*, Zhekai and Cai, Tianle and Li, Xiuyu and Guo, Junxian and Xie, Enze and Meng, Chenlin and Zhu, Jun-Yan and Han, Song},
61
+ booktitle={The Thirteenth International Conference on Learning Representations},
62
+ year={2025}
63
+ }
64
+ @article{
65
+ xie2024sana,
66
+ title={Sana: Efficient high-resolution image synthesis with linear diffusion transformers},
67
+ author={Xie, Enze and Chen, Junsong and Chen, Junyu and Cai, Han and Tang, Haotian and Lin, Yujun and Zhang, Zhekai and Li, Muyang and Zhu, Ligeng and Lu, Yao and others},
68
+ journal={arXiv preprint arXiv:2410.10629},
69
+ year={2024}
70
+ }
71
+ ```