File size: 11,043 Bytes
8e94991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import json
from typing import List, Optional, Dict
from transformers import PreTrainedTokenizer
import os
import json
import re
import torch
default_config = {
    "custom_digits": "0123456789ABCDEF",
    "variable_atoms": {
        "left_operand": "a",   # 左操作数变量名
        "right_operand": "b"   # 右操作数变量名
    },

    "other_symbols_atoms": {
        "left_parenthesis": "(",    # 左括号
        "right_parenthesis": ")",   # 右括号
        "equals_sign": "=",         # 等号,常用于赋值或比较
        "nan_symbol": "NaN",        # 非数(Not a Number)
        "inf_symbol": "Inf"         # 无穷大(Infinity)
    },

    "operator_symbol_min_len": 1,
    "operator_symbol_max_len": 3,

    "basic_operator_symbols": ["+", "-", "*", "/", "%"],

    "base_symbols": [
        "≮⫘↔", 
        "⫏≰", 
        "⪩⨒∯", 
        "⇑⪆", 
        "↹⩛", 
        "≴∭⊉", 
        "⪪⊹⋣", 
        "⋋%⋟", 
        "⊺⇮", 
        "⋰*⋻", 
        "⫖↰⪸", 
        "⪎⋱⫍", 
        "⨗⨭⨅", 
        "⫶⩼⫲", 
        "∃⊬"
    ],

    "comparison_ops": ["==", ">", "<", ">=", "<=", "!="],

    "logical_connectors": ["and", "or"],

    "definition_symbols": [
        ",",    
        ";",    
        "if",   
        "else", 
        "{",    
        "}",    
        "abs"   
    ]
}

class OpTokenizer(PreTrainedTokenizer):
    def __init__(self, vocab_file, **kwargs):
       
        self.param_config= default_config
        self.vocab = self.load_vocab(vocab_file)
        self.ids_to_tokens = {v: k for k, v in self.vocab.items()}
        super().__init__(**kwargs)
        # 定义基础符号
        self.basic_symbols = list("0123456789()=ABCDEFab")
        self.special_results = ['NaN', 'Inf']
        self.comparison_ops = ["==", ">", "<", ">=", "<=", "!="]
        self.logical_connectors = ["and", "or"]
        self.definition_symbols = [",", ";", "if", "else", "{", "}", "abs"]

        self.token_regex = self.build_token_regex()
        
        # 初始化特殊标记 ID
        self.pad_id = self.vocab['[PAD]']
        self.unk_id = self.vocab['[UNK]']
        self.sep_id = self.vocab['[SEP]']
        self.mask_id = self.vocab['[MASK]']
        self.bos_id = self.vocab['[BOS]']
        self.eos_id = self.vocab['[EOS]']
        self.eod_id = self.vocab['[EOD]']
        
    def load_vocab(self, vocab_file):
        # 实现你的词表加载逻辑
        with open(vocab_file, encoding="utf-8") as f:
            vocab = json.load(f)
        return vocab

    def save_vocabulary(self, save_directory, filename_prefix=""):
        if filename_prefix is None:
            filename_prefix = ""

        if not os.path.exists(save_directory):
            os.makedirs(save_directory)

        vocab_file_path = os.path.join(save_directory, filename_prefix + "vocab.json")

        with open(vocab_file_path, "w", encoding="utf-8") as f:
            json.dump(self.vocab, f, ensure_ascii=False, indent=4)

        print(f"Vocabulary saved to {vocab_file_path}")
        
        return (vocab_file_path,)  # 返回元组而不是列表

    def build_token_regex(self):
        """构建分词正则表达式,逐字符、符号进行匹配"""
        # 特殊结果的正则表达式(比如 NaN, Inf)
        special_results = [re.escape(result) for result in self.special_results]
        # 比较操作符的正则表达式
        comparison_ops = [re.escape(op) for op in self.comparison_ops]
        # 逻辑连接符的正则表达式
        logical_connectors = [re.escape(connector) for connector in self.logical_connectors]
        
        operator_pattern = r"(?P<OPERATOR>([+\-*/%]|[\u2200-\u22FF\u2A00-\u2BFF\u2190-\u21FF])+)"
        variable_pattern = r"(?P<VARIABLE>[a-b])"
        digit_pattern = r"(?P<DIGIT>[0-9A-F])"
        special_result_pattern = r"(?P<SPECIAL_RESULT>" + "|".join(special_results) + ")"
        comparison_ops_pattern = r"(?P<COMPARISON_OP>" + "|".join(comparison_ops) + ")"
        logical_connectors_pattern = r"(?P<LOGICAL_CONNECTOR>" + "|".join(logical_connectors) + ")"
        if_else_pattern = r"(?P<IF_ELSE>if|else)"
        whitespace_pattern = r"(?P<WHITESPACE>\s+)"
        abs_pattern =  r"(?P<ABS>abs)"
        punctuation_patterns = [
                r"(?P<PARENTHESIS_LEFT>\()",
                r"(?P<PARENTHESIS_RIGHT>\))",
                r"(?P<CURLY_BRACE_LEFT>{)",
                r"(?P<CURLY_BRACE_RIGHT>})",
                r"(?P<SEMICOLON>;)",
                r"(?P<COMMA>,)",
                r"(?P<EQUAL>=)"
        ]
        
        # 所有模式结合在一起,注意先后顺序,应该先匹配长的
        token_patterns = [
            operator_pattern,
            special_result_pattern,  # 特殊符号(如 NaN, Inf)
            comparison_ops_pattern,  # 比较操作符
            logical_connectors_pattern,  # 逻辑连接符
            if_else_pattern,  # if 和 else
            abs_pattern,
            digit_pattern, 
            variable_pattern,  # 小写字母(变量名)
            whitespace_pattern,  # 空格和换行符

        ] + punctuation_patterns  # 将标点符号的正则表达式添加到列表中
        
        # 使用 | 连接所有模式
        combined_pattern = "|".join(token_patterns)
        
        # 返回编译后的正则表达式对象
        return re.compile(combined_pattern)
    
    def tokenize(self, text: str, mode: str = 'text', add_special_tokens: bool = True):
        if mode == 'definition':
            return self._tokenize_definition(text, add_special_tokens)
        elif mode == 'text':
            return self._tokenize_equation(text, add_special_tokens)
        elif mode == 'withdef_text':
            return self._tokenize_withdef_text(text, add_special_tokens)
        else:
            raise ValueError(f"Unsupported mode: {self.mode}")

    def _tokenize_definition(self, text, add_special_tokens):
        tokens = []
        if add_special_tokens:
            tokens.append('[DEF_START]')
        for match in self.token_regex.finditer(text):
            token_type = match.lastgroup
            token_value = match.group(token_type)
            if token_type != "WHITESPACE":
                tokens.append(token_value)
        if add_special_tokens:
            tokens.append('[DEF_END]')
        return tokens

    def _tokenize_equation(self, text, add_special_tokens):
        tokens = []
        if add_special_tokens:
            tokens.append('[EQ_START]')
        
        self.digit_pattern = f"[{re.escape(self.param_config['custom_digits'])}]"
        self.number_pattern = f"[-]?{self.digit_pattern}+"
        self.base_symbols_pattern = f"(?:{'|'.join(map(re.escape, self.param_config['base_symbols']))})"
        self.base_symbols_number_pattern = f"({self.base_symbols_pattern}{self.number_pattern})"

        parts = re.split(self.base_symbols_number_pattern, text)
        final_parts = []
        for part in parts:
            if re.search(self.number_pattern, part):
                sub_parts = re.split(f"({self.number_pattern})", part)
                final_parts.extend(sub_parts)
            else:
                final_parts.append(part)

        for part in final_parts:
            for match in self.token_regex.finditer(part):
                token_type = match.lastgroup
                token_value = match.group(token_type)
                if token_type != "WHITESPACE":
                    tokens.append(token_value)

        if add_special_tokens:
            tokens.append('[EQ_END]')
        return tokens

    def _tokenize_withdef_text(self, text, add_special_tokens):
        tokens = []
        segments = re.split(r'(\[DEF_START\]|\[DEF_JOIN\]|\[DEF_END\]|\[EQ_START\]|\[EQ_END\])', text)
        current_mode = None

        for seg in segments:
            seg = seg.strip()
            if not seg:
                continue

            if seg in ['[DEF_START]', '[DEF_JOIN]']:
                if add_special_tokens:
                    tokens.append(seg)
                current_mode = 'definition'
            elif seg == '[DEF_END]':
                if add_special_tokens:
                    tokens.append(seg)
                current_mode = None
            elif seg == '[EQ_START]':
                if add_special_tokens:
                    tokens.append(seg)
                current_mode = 'text'
            elif seg == '[EQ_END]':
                if add_special_tokens:
                    tokens.append(seg)
                current_mode = None
            else:
                if current_mode == 'definition':
                    inner_tokens = self._tokenize_definition(seg, add_special_tokens=False)
                    tokens.extend(inner_tokens)
                elif current_mode == 'text':
                    inner_tokens = self._tokenize_equation(seg, add_special_tokens=False)
                    tokens.extend(inner_tokens)
                else:
                    tokens.extend(seg.split())
        return tokens


    def convert_tokens_to_ids(self, tokens):
        if isinstance(tokens[0], str):
            return [self.vocab.get(token, self.vocab['[UNK]']) for token in tokens]
        return tokens

    def convert_ids_to_tokens(self, ids):
        reverse_vocab = {v: k for k, v in self.vocab.items()}
        return [reverse_vocab.get(i, '[UNK]') for i in ids]
    
    # def encode(self, text, mode=None, add_special_tokens=None):
    #     tokens = self.tokenize(text, mode=mode, add_special_tokens=add_special_tokens)
    #     return self.convert_tokens_to_ids(tokens)

    def get_vocab(self):
        return self.vocab
    
    def encode(self, texts, mode=None, add_special_tokens=True, padding=True, truncation=True, max_length=None):
        all_tokens = self.tokenize(texts, mode=mode, add_special_tokens=add_special_tokens)
        all_ids = [self.convert_tokens_to_ids(tokens) for tokens in all_tokens]
        
        # Padding and truncation logic as before
        if padding:
            max_len = max(len(ids) for ids in all_ids)
            padded_ids = [ids + [self.pad_id] * (max_len - len(ids)) for ids in all_ids]
        else:
            padded_ids = all_ids

        if truncation and max_length:
            padded_ids = [ids[:max_length] for ids in padded_ids]

        input_ids_tensor = torch.tensor(padded_ids)
        return input_ids_tensor

    def decode(self, ids, skip_special_tokens=False):
        tokens = self.convert_ids_to_tokens(ids)
        if skip_special_tokens:
            tokens = [t for t in tokens if not (t.startswith('[') and t.endswith(']'))]
        return " ".join(tokens).replace(" ##", "")
    
    def __call__(self, texts, return_tensors=None, **kwargs):
        if isinstance(texts, str):
            texts = [texts]  

        input_ids = self.encode(texts, **kwargs)

        if return_tensors == "pt":
            return {"input_ids": input_ids}

        return {"input_ids": input_ids.tolist()}