Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model:
|
3 |
+
- google/gemma-2-2b-it
|
4 |
+
tags:
|
5 |
+
- text-generation-inference
|
6 |
+
- transformers
|
7 |
+
- unsloth
|
8 |
+
- gemma2
|
9 |
+
- trl
|
10 |
+
license: gemma
|
11 |
+
language:
|
12 |
+
- en
|
13 |
+
- fi
|
14 |
+
- sv
|
15 |
+
---
|
16 |
+
|
17 |
+
This example utilizes the [European AI Act regulation text](https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32024R1689) as training data in three languages:
|
18 |
+
English, Finnish, and Swedish. The dataset comprises 9,175 data points for training and 2,456 for evaluation.
|
19 |
+
|
20 |
+
Python libraries needed:
|
21 |
+
|
22 |
+
```python
|
23 |
+
pip install -U transformers
|
24 |
+
pip install torch torchvision torchaudio
|
25 |
+
pip install 'accelerate>=0.26.0'
|
26 |
+
```
|
27 |
+
|
28 |
+
The training arguments used are as follows:
|
29 |
+
|
30 |
+
```python
|
31 |
+
training_args = TrainingArguments(
|
32 |
+
per_device_train_batch_size=32,
|
33 |
+
gradient_accumulation_steps=32,
|
34 |
+
warmup_steps=10,
|
35 |
+
max_steps=200,
|
36 |
+
learning_rate=2e-5,
|
37 |
+
fp16=not is_bfloat16_supported(),
|
38 |
+
bf16=is_bfloat16_supported(),
|
39 |
+
logging_steps=1,
|
40 |
+
optim="adamw_8bit",
|
41 |
+
weight_decay=0.01,
|
42 |
+
lr_scheduler_type="linear",
|
43 |
+
seed=3407,
|
44 |
+
output_dir=output_dir,
|
45 |
+
report_to="none",
|
46 |
+
eval_strategy="steps",
|
47 |
+
eval_steps=20,
|
48 |
+
load_best_model_at_end=True,
|
49 |
+
metric_for_best_model="eval_loss",
|
50 |
+
greater_is_better=False,
|
51 |
+
save_total_limit=2,
|
52 |
+
)
|
53 |
+
```
|
54 |
+
|
55 |
+
The prediction is made using the standard Gemma:
|
56 |
+
|
57 |
+
```python
|
58 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
59 |
+
import transformers
|
60 |
+
import torch
|
61 |
+
|
62 |
+
model_id = "mlconvexai/gemma-2-2b-it-finetuned-EU-Act"
|
63 |
+
dtype = torch.bfloat16
|
64 |
+
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
66 |
+
model = AutoModelForCausalLM.from_pretrained(
|
67 |
+
model_id,
|
68 |
+
device_map="auto",
|
69 |
+
torch_dtype=dtype,)
|
70 |
+
|
71 |
+
chat = [
|
72 |
+
{ "role": "user", "content": "Mikä on EU:n tekoälyasetus?" },
|
73 |
+
]
|
74 |
+
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
75 |
+
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
|
76 |
+
outputs = model.generate(
|
77 |
+
input_ids=inputs.to(model.device),
|
78 |
+
max_new_tokens=1024,
|
79 |
+
repetition_penalty=1.1,
|
80 |
+
no_repeat_ngram_size=4,
|
81 |
+
)
|
82 |
+
print(tokenizer.decode(outputs[0]))
|
83 |
+
```
|
84 |
+
|
85 |
+
More detailed information about fine-tuning can be found on [Medium](https://medium.com/@timo.au.laine/eu-ai-act-fine-tune-multilingual-local-llm-2c0657cc47f8).
|
86 |
+
|
87 |
+
# Uploaded model
|
88 |
+
|
89 |
+
- **Developed by:** mlconvexai
|
90 |
+
- **License:** Gemma
|
91 |
+
- **Finetuned from model :** google/gemma-2-2b-it
|
92 |
+
|
93 |
+
This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
94 |
+
|
95 |
+
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|