LEUKEMIA CLASSIFICATION ENSEMBLE MODEL REPORT | |
================================================== | |
Generated on: 2025-05-22 13:06:19 | |
CONFIGURATION: | |
-------------------- | |
ORIGINAL_DIR: ./Original | |
SEGMENTED_DIR: ./Segmented | |
BATCH_SIZE: 32 | |
NUM_EPOCHS: 100 | |
LEARNING_RATE: 0.001 | |
PATIENCE: 15 | |
CLASS_NAMES: ['Benign', 'Early', 'Pre', 'Pro'] | |
NUM_CLASSES: 4 | |
IMG_SIZE: 224 | |
RANDOM_STATE: 42 | |
MODEL PERFORMANCE SUMMARY: | |
------------------------------ | |
RESNET50: | |
Overall Accuracy: 0.9816 | |
Per-class Performance: | |
Benign: | |
Precision: 0.9412 | |
Recall: 0.9600 | |
F1-Score: 0.9505 | |
Early: | |
Precision: 0.9798 | |
Recall: 0.9798 | |
F1-Score: 0.9798 | |
Pre: | |
Precision: 0.9896 | |
Recall: 0.9896 | |
F1-Score: 0.9896 | |
Pro: | |
Precision: 1.0000 | |
Recall: 0.9877 | |
F1-Score: 0.9938 | |
Macro Avg F1-Score: 0.9784 | |
Weighted Avg F1-Score: 0.9817 | |
ENSEMBLE: | |
Overall Accuracy: 0.9785 | |
Per-class Performance: | |
Benign: | |
Precision: 0.9783 | |
Recall: 0.9000 | |
F1-Score: 0.9375 | |
Early: | |
Precision: 0.9519 | |
Recall: 1.0000 | |
F1-Score: 0.9754 | |
Pre: | |
Precision: 0.9896 | |
Recall: 0.9896 | |
F1-Score: 0.9896 | |
Pro: | |
Precision: 1.0000 | |
Recall: 0.9877 | |
F1-Score: 0.9938 | |
Macro Avg F1-Score: 0.9741 | |
Weighted Avg F1-Score: 0.9783 | |
UNET: | |
Overall Accuracy: 0.9755 | |
Per-class Performance: | |
Benign: | |
Precision: 0.9388 | |
Recall: 0.9200 | |
F1-Score: 0.9293 | |
Early: | |
Precision: 0.9612 | |
Recall: 1.0000 | |
F1-Score: 0.9802 | |
Pre: | |
Precision: 1.0000 | |
Recall: 0.9896 | |
F1-Score: 0.9948 | |
Pro: | |
Precision: 0.9873 | |
Recall: 0.9630 | |
F1-Score: 0.9750 | |
Macro Avg F1-Score: 0.9698 | |
Weighted Avg F1-Score: 0.9754 | |
EFFICIENTNET: | |
Overall Accuracy: 0.9693 | |
Per-class Performance: | |
Benign: | |
Precision: 0.9362 | |
Recall: 0.8800 | |
F1-Score: 0.9072 | |
Early: | |
Precision: 0.9510 | |
Recall: 0.9798 | |
F1-Score: 0.9652 | |
Pre: | |
Precision: 0.9796 | |
Recall: 1.0000 | |
F1-Score: 0.9897 | |
Pro: | |
Precision: 1.0000 | |
Recall: 0.9753 | |
F1-Score: 0.9875 | |
Macro Avg F1-Score: 0.9624 | |
Weighted Avg F1-Score: 0.9691 | |
VGG19: | |
Overall Accuracy: 0.9417 | |
Per-class Performance: | |
Benign: | |
Precision: 0.9286 | |
Recall: 0.7800 | |
F1-Score: 0.8478 | |
Early: | |
Precision: 0.8981 | |
Recall: 0.9798 | |
F1-Score: 0.9372 | |
Pre: | |
Precision: 0.9495 | |
Recall: 0.9792 | |
F1-Score: 0.9641 | |
Pro: | |
Precision: 1.0000 | |
Recall: 0.9506 | |
F1-Score: 0.9747 | |
Macro Avg F1-Score: 0.9310 | |
Weighted Avg F1-Score: 0.9407 | |
VIT: | |
Overall Accuracy: 0.9172 | |
Per-class Performance: | |
Benign: | |
Precision: 0.8750 | |
Recall: 0.5600 | |
F1-Score: 0.6829 | |
Early: | |
Precision: 0.8319 | |
Recall: 1.0000 | |
F1-Score: 0.9083 | |
Pre: | |
Precision: 0.9694 | |
Recall: 0.9896 | |
F1-Score: 0.9794 | |
Pro: | |
Precision: 1.0000 | |
Recall: 0.9506 | |
F1-Score: 0.9747 | |
Macro Avg F1-Score: 0.8863 | |
Weighted Avg F1-Score: 0.9111 | |
Best performing model: ResNet50 with 0.9816 accuracy | |