leukemia / detailed_report.txt
mlgawd's picture
Upload folder using huggingface_hub
f8fe970 verified
LEUKEMIA CLASSIFICATION ENSEMBLE MODEL REPORT
==================================================
Generated on: 2025-05-22 13:06:19
CONFIGURATION:
--------------------
ORIGINAL_DIR: ./Original
SEGMENTED_DIR: ./Segmented
BATCH_SIZE: 32
NUM_EPOCHS: 100
LEARNING_RATE: 0.001
PATIENCE: 15
CLASS_NAMES: ['Benign', 'Early', 'Pre', 'Pro']
NUM_CLASSES: 4
IMG_SIZE: 224
RANDOM_STATE: 42
MODEL PERFORMANCE SUMMARY:
------------------------------
RESNET50:
Overall Accuracy: 0.9816
Per-class Performance:
Benign:
Precision: 0.9412
Recall: 0.9600
F1-Score: 0.9505
Early:
Precision: 0.9798
Recall: 0.9798
F1-Score: 0.9798
Pre:
Precision: 0.9896
Recall: 0.9896
F1-Score: 0.9896
Pro:
Precision: 1.0000
Recall: 0.9877
F1-Score: 0.9938
Macro Avg F1-Score: 0.9784
Weighted Avg F1-Score: 0.9817
ENSEMBLE:
Overall Accuracy: 0.9785
Per-class Performance:
Benign:
Precision: 0.9783
Recall: 0.9000
F1-Score: 0.9375
Early:
Precision: 0.9519
Recall: 1.0000
F1-Score: 0.9754
Pre:
Precision: 0.9896
Recall: 0.9896
F1-Score: 0.9896
Pro:
Precision: 1.0000
Recall: 0.9877
F1-Score: 0.9938
Macro Avg F1-Score: 0.9741
Weighted Avg F1-Score: 0.9783
UNET:
Overall Accuracy: 0.9755
Per-class Performance:
Benign:
Precision: 0.9388
Recall: 0.9200
F1-Score: 0.9293
Early:
Precision: 0.9612
Recall: 1.0000
F1-Score: 0.9802
Pre:
Precision: 1.0000
Recall: 0.9896
F1-Score: 0.9948
Pro:
Precision: 0.9873
Recall: 0.9630
F1-Score: 0.9750
Macro Avg F1-Score: 0.9698
Weighted Avg F1-Score: 0.9754
EFFICIENTNET:
Overall Accuracy: 0.9693
Per-class Performance:
Benign:
Precision: 0.9362
Recall: 0.8800
F1-Score: 0.9072
Early:
Precision: 0.9510
Recall: 0.9798
F1-Score: 0.9652
Pre:
Precision: 0.9796
Recall: 1.0000
F1-Score: 0.9897
Pro:
Precision: 1.0000
Recall: 0.9753
F1-Score: 0.9875
Macro Avg F1-Score: 0.9624
Weighted Avg F1-Score: 0.9691
VGG19:
Overall Accuracy: 0.9417
Per-class Performance:
Benign:
Precision: 0.9286
Recall: 0.7800
F1-Score: 0.8478
Early:
Precision: 0.8981
Recall: 0.9798
F1-Score: 0.9372
Pre:
Precision: 0.9495
Recall: 0.9792
F1-Score: 0.9641
Pro:
Precision: 1.0000
Recall: 0.9506
F1-Score: 0.9747
Macro Avg F1-Score: 0.9310
Weighted Avg F1-Score: 0.9407
VIT:
Overall Accuracy: 0.9172
Per-class Performance:
Benign:
Precision: 0.8750
Recall: 0.5600
F1-Score: 0.6829
Early:
Precision: 0.8319
Recall: 1.0000
F1-Score: 0.9083
Pre:
Precision: 0.9694
Recall: 0.9896
F1-Score: 0.9794
Pro:
Precision: 1.0000
Recall: 0.9506
F1-Score: 0.9747
Macro Avg F1-Score: 0.8863
Weighted Avg F1-Score: 0.9111
Best performing model: ResNet50 with 0.9816 accuracy