kernelpool commited on
Commit
cd3ed1e
·
verified ·
1 Parent(s): 3ee37cc

Add files using upload-large-folder tool

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: mlx
4
+ tags:
5
+ - dllm
6
+ - diffusion
7
+ - llm
8
+ - text_generation
9
+ - mlx
10
+ base_model: inclusionAI/LLaDA2.0-flash-preview
11
+ pipeline_tag: text-generation
12
+ ---
13
+
14
+ # mlx-community/LLaDA2.0-flash-preview-4bit
15
+
16
+ This model [mlx-community/LLaDA2.0-flash-preview-4bit](https://huggingface.co/mlx-community/LLaDA2.0-flash-preview-4bit) was
17
+ converted to MLX format from [inclusionAI/LLaDA2.0-flash-preview](https://huggingface.co/inclusionAI/LLaDA2.0-flash-preview)
18
+ using mlx-lm version **0.28.4**.
19
+
20
+ ## Use with mlx
21
+
22
+ ```bash
23
+ pip install mlx-lm
24
+ ```
25
+
26
+ ```python
27
+ from mlx_lm import load, generate
28
+
29
+ model, tokenizer = load("mlx-community/LLaDA2.0-flash-preview-4bit")
30
+
31
+ prompt = "hello"
32
+
33
+ if tokenizer.chat_template is not None:
34
+ messages = [{"role": "user", "content": prompt}]
35
+ prompt = tokenizer.apply_chat_template(
36
+ messages, add_generation_prompt=True
37
+ )
38
+
39
+ response = generate(model, tokenizer, prompt=prompt, verbose=True)
40
+ ```
chat_template.jinja ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {% set thinking_option = 'off' %}
2
+ {{- '<role>SYSTEM</role>' }}
3
+ {%- if messages[0].role == 'system' %}
4
+ {{- messages[0].content + '\n' }}
5
+ {%- endif %}
6
+ {%- if tools %}
7
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
8
+ {%- for tool in tools %}
9
+ {{- "\n" }}
10
+ {{- tool | tojson }}
11
+ {%- endfor %}
12
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call>\n" }}
13
+ {%- endif %}
14
+ {{- 'detailed thinking ' + thinking_option + '<|role_end|>' }}
15
+ {%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
16
+ {%- for message in messages[::-1] %}
17
+ {%- set index = (messages|length - 1) - loop.index0 %}
18
+ {%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
19
+ {%- set ns.multi_step_tool = false %}
20
+ {%- set ns.last_query_index = index %}
21
+ {%- endif %}
22
+ {%- endfor %}
23
+ {%- for message in messages %}
24
+ {%- if message.content is string %}
25
+ {%- set content = message.content %}
26
+ {%- else %}
27
+ {%- set content = '' %}
28
+ {%- endif %}
29
+ {%- if message.role == "user" %}
30
+ {{- '<role>HUMAN</role>' + message.content + '<|role_end|>' }}
31
+ {%- elif message.role == "system" and not loop.first %}
32
+ {{- '<role>SYSTEM</role>' + message.content + '<|role_end|>' }}
33
+ {%- elif message.role == "assistant" %}
34
+ {%- set reasoning_content = '' %}
35
+ {%- if message.reasoning_content is string %}
36
+ {%- set reasoning_content = message.reasoning_content %}
37
+ {%- else %}
38
+ {%- if '</think>' in content %}
39
+ {%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
40
+ {%- set content = content.split('</think>')[-1].lstrip('\n') %}
41
+ {%- endif %}
42
+ {%- endif %}
43
+ {%- if loop.index0 > ns.last_query_index %}
44
+ {%- if reasoning_content %}
45
+ {{- '<role>ASSISTANT</role>' + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
46
+ {%- else %}
47
+ {{- '<role>ASSISTANT</role>' + content }}
48
+ {%- endif %}
49
+ {%- else %}
50
+ {{- '<role>ASSISTANT</role>' + content }}
51
+ {%- endif %}
52
+ {%- if message.tool_calls %}
53
+ {%- for tool_call in message.tool_calls %}
54
+ {%- if (loop.first and content) or (not loop.first) %}
55
+ {{- '\n' }}
56
+ {%- endif %}
57
+ {%- if tool_call.function %}
58
+ {%- set tool_call = tool_call.function %}
59
+ {%- endif %}
60
+ {{- '<tool_call>\n{"name": "' }}
61
+ {{- tool_call.name }}
62
+ {{- '", "arguments": ' }}
63
+ {%- if tool_call.arguments is string %}
64
+ {{- tool_call.arguments }}
65
+ {%- else %}
66
+ {{- tool_call.arguments | tojson }}
67
+ {%- endif %}
68
+ {{- '}\n</tool_call>' }}
69
+ {%- endfor %}
70
+ {%- endif %}
71
+ {{- '<|role_end|>' }}
72
+ {%- elif message.role == "tool" %}
73
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
74
+ {{- '<role>OBSERVATION</role>' }}
75
+ {%- endif %}
76
+ {{- '\n<tool_response>\n' }}
77
+ {{- content }}
78
+ {{- '\n</tool_response>' }}
79
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
80
+ {{- '<|role_end|>' }}
81
+ {%- endif %}
82
+ {%- endif %}
83
+ {%- endfor %}
84
+ {%- if add_generation_prompt %}
85
+ {{- '<role>ASSISTANT</role>' }}
86
+ {%- endif %}
config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LLaDA2MoeModelLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_llada2_moe.LLaDA2MoeConfig",
8
+ "AutoModel": "modeling_llada2_moe.LLaDA2MoeModel",
9
+ "AutoModelForCausalLM": "modeling_llada2_moe.LLaDA2MoeModelLM"
10
+ },
11
+ "embedding_dropout": 0.0,
12
+ "first_k_dense_replace": 1,
13
+ "head_dim": 128,
14
+ "hidden_act": "silu",
15
+ "hidden_size": 4096,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 9216,
18
+ "max_position_embeddings": 16384,
19
+ "max_window_layers": 28,
20
+ "model_type": "llada2_moe",
21
+ "moe_intermediate_size": 1024,
22
+ "moe_router_enable_expert_bias": true,
23
+ "n_group": 8,
24
+ "norm_head": false,
25
+ "norm_softmax": false,
26
+ "norm_topk_prob": true,
27
+ "num_attention_heads": 32,
28
+ "num_experts": 256,
29
+ "num_experts_per_tok": 8,
30
+ "num_hidden_layers": 32,
31
+ "num_key_value_heads": 4,
32
+ "num_shared_experts": 1,
33
+ "output_dropout": 0.0,
34
+ "output_router_logits": false,
35
+ "pad_token_id": 156892,
36
+ "partial_rotary_factor": 0.5,
37
+ "quantization": {
38
+ "group_size": 64,
39
+ "bits": 4,
40
+ "mode": "affine"
41
+ },
42
+ "quantization_config": {
43
+ "group_size": 64,
44
+ "bits": 4,
45
+ "mode": "affine"
46
+ },
47
+ "rms_norm_eps": 1e-06,
48
+ "rope_scaling": null,
49
+ "rope_theta": 600000,
50
+ "rotary_dim": 64,
51
+ "routed_scaling_factor": 2.5,
52
+ "router_dtype": "fp32",
53
+ "score_function": "sigmoid",
54
+ "tie_word_embeddings": false,
55
+ "topk_group": 4,
56
+ "torch_dtype": "bfloat16",
57
+ "transformers_version": "4.52.3",
58
+ "use_bias": false,
59
+ "use_cache": true,
60
+ "use_qkv_bias": false,
61
+ "use_rmsnorm": true,
62
+ "use_sliding_window": false,
63
+ "using_split_qkv_in_self_attention": false,
64
+ "vocab_size": 157184
65
+ }
configuration_llada2_moe.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """LLaDA2 MoE model configuration"""
2
+
3
+ from transformers.configuration_utils import PretrainedConfig
4
+
5
+
6
+ class LLaDA2MoeConfig(PretrainedConfig):
7
+ model_type = "llada2_moe"
8
+
9
+ def __init__(
10
+ self,
11
+ vocab_size=30592,
12
+ hidden_size=1024,
13
+ intermediate_size=None,
14
+ num_hidden_layers=24,
15
+ num_attention_heads=16,
16
+ num_key_value_heads=0,
17
+ hidden_act="silu",
18
+ use_qkv_bias=False, # llada2 only
19
+ use_qk_norm=False,
20
+ use_bias=True, # llada2 only
21
+ rms_norm_eps=1e-05,
22
+ norm_head=False, # llada2 only
23
+ tie_word_embeddings=False, # PretrainedConfig key, here change default value.
24
+ embedding_dropout=0.1,
25
+ attention_dropout=0.1,
26
+ output_dropout=0.1,
27
+ initializer_range=0.02,
28
+ max_position_embeddings=16384,
29
+ rope_theta=10000.0,
30
+ use_cache=True,
31
+ use_sliding_window=False,
32
+ sliding_window=4096,
33
+ max_window_layers=28,
34
+ rope_scaling=None,
35
+ pad_token_id=126081,
36
+ num_experts=16,
37
+ num_shared_experts=0,
38
+ num_experts_per_tok=2,
39
+ n_group=8,
40
+ topk_group=4,
41
+ routed_scaling_factor=2.5,
42
+ moe_intermediate_size=None,
43
+ first_k_dense_replace=0,
44
+ head_dim=None,
45
+ output_router_logits=False,
46
+ partial_rotary_factor=0.5,
47
+ **kwargs,
48
+ ):
49
+ self.num_hidden_layers = num_hidden_layers
50
+ self.vocab_size = vocab_size
51
+ self.hidden_size = hidden_size
52
+ self.intermediate_size = intermediate_size
53
+ self.num_attention_heads = num_attention_heads
54
+ self.num_key_value_heads = num_key_value_heads
55
+ self.hidden_act = hidden_act
56
+ self.use_qkv_bias = use_qkv_bias
57
+ self.use_bias = use_bias
58
+ self.norm_head = norm_head
59
+ self.rms_norm_eps = rms_norm_eps
60
+ self.embedding_dropout = embedding_dropout
61
+ self.attention_dropout = attention_dropout
62
+ self.output_dropout = output_dropout
63
+ self.initializer_range = initializer_range
64
+ self.max_position_embeddings = max_position_embeddings
65
+ self.rope_theta = rope_theta
66
+ self.use_cache = use_cache
67
+ self.use_sliding_window = use_sliding_window
68
+ self.sliding_window = sliding_window
69
+ self.max_window_layers = max_window_layers
70
+ self.head_dim = head_dim or self.hidden_size // self.num_attention_heads
71
+ self.rope_scaling = rope_scaling
72
+
73
+ # MoE configs
74
+ self.num_experts = num_experts
75
+ self.num_shared_experts = num_shared_experts
76
+ self.num_experts_per_tok = num_experts_per_tok
77
+ self.n_group = n_group
78
+ self.topk_group = topk_group
79
+ self.moe_intermediate_size = moe_intermediate_size
80
+ self.first_k_dense_replace = first_k_dense_replace
81
+ self.output_router_logits = output_router_logits
82
+ self.routed_scaling_factor = routed_scaling_factor
83
+ self.partial_rotary_factor = partial_rotary_factor
84
+
85
+ super().__init__(pad_token_id=pad_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs)
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "eos_token_id": 156892,
4
+ "pad_token_id": 156892,
5
+ "transformers_version": "4.46.3",
6
+ "use_cache": false
7
+ }
model-00001-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df4e5996435cea36414d5692e9250803b6bd6f233839ae8012fca067b1ca4e7b
3
+ size 5361039659
model-00002-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a32787dbd411295a89a2f244a6f178572f273bb63d87d7d26fe5f94fd147b927
3
+ size 4923127174
model-00003-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8805f5a89b172b56268c31d80bb887fbd81834916f18529d8a80083c874b59a4
3
+ size 4923127124
model-00004-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6ad8e6a5b81fb1104920feeda61c801402614298549c4e653ae1351c2e12eea
3
+ size 4892698602
model-00005-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e1fb404fb2f8b15a459c68a2123d58021a3346f9140dee09416156338ab9b1f
3
+ size 4923127211
model-00006-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:add8219901584580cdce6174c6003979b501985b51277e890b40f85e6ac8f3cf
3
+ size 4923127211
model-00007-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4573ef38c48a34057cb4f8213ad7d2e0df43ca6b9b66858d7ada0c36ed27b12
3
+ size 4892698606
model-00008-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:985f865279b57dfebd4136c6d0cc947d4ef5f42d4843d1b20fbc5cf9f40e026c
3
+ size 4923127249
model-00009-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3caadd31e1fb62f4c80994df380e34a7c6e44453dcf8d66ed2fb41685f17f819
3
+ size 4923127209
model-00010-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ee757a2019b0338d08c92214757dabf32115284ea1a6eb3157c586db43c3d53
3
+ size 4892698622
model-00011-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed7a0418518c0a5aab6543b07cbbe4749c8f6e42aa329b8eb8b9d2045126f410
3
+ size 4923127271
model-00012-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9391137d5e618e7ba870b6b1227620c5ee4fbf0ed431ebcef7c20814ae9d2fa
3
+ size 3421683448
model.safetensors.index.json ADDED
@@ -0,0 +1,964 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 57922592256,
4
+ "total_parameters": 102889705216
5
+ },
6
+ "weight_map": {
7
+ "lm_head.biases": "model-00012-of-00012.safetensors",
8
+ "lm_head.scales": "model-00012-of-00012.safetensors",
9
+ "lm_head.weight": "model-00012-of-00012.safetensors",
10
+ "model.layers.0.attention.dense.biases": "model-00001-of-00012.safetensors",
11
+ "model.layers.0.attention.dense.scales": "model-00001-of-00012.safetensors",
12
+ "model.layers.0.attention.dense.weight": "model-00001-of-00012.safetensors",
13
+ "model.layers.0.attention.key_layernorm.weight": "model-00001-of-00012.safetensors",
14
+ "model.layers.0.attention.query_key_value.biases": "model-00001-of-00012.safetensors",
15
+ "model.layers.0.attention.query_key_value.scales": "model-00001-of-00012.safetensors",
16
+ "model.layers.0.attention.query_key_value.weight": "model-00001-of-00012.safetensors",
17
+ "model.layers.0.attention.query_layernorm.weight": "model-00001-of-00012.safetensors",
18
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00012.safetensors",
19
+ "model.layers.0.mlp.down_proj.biases": "model-00001-of-00012.safetensors",
20
+ "model.layers.0.mlp.down_proj.scales": "model-00001-of-00012.safetensors",
21
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00012.safetensors",
22
+ "model.layers.0.mlp.gate_proj.biases": "model-00001-of-00012.safetensors",
23
+ "model.layers.0.mlp.gate_proj.scales": "model-00001-of-00012.safetensors",
24
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00012.safetensors",
25
+ "model.layers.0.mlp.up_proj.biases": "model-00001-of-00012.safetensors",
26
+ "model.layers.0.mlp.up_proj.scales": "model-00001-of-00012.safetensors",
27
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00012.safetensors",
28
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00012.safetensors",
29
+ "model.layers.1.attention.dense.biases": "model-00001-of-00012.safetensors",
30
+ "model.layers.1.attention.dense.scales": "model-00001-of-00012.safetensors",
31
+ "model.layers.1.attention.dense.weight": "model-00001-of-00012.safetensors",
32
+ "model.layers.1.attention.key_layernorm.weight": "model-00001-of-00012.safetensors",
33
+ "model.layers.1.attention.query_key_value.biases": "model-00001-of-00012.safetensors",
34
+ "model.layers.1.attention.query_key_value.scales": "model-00001-of-00012.safetensors",
35
+ "model.layers.1.attention.query_key_value.weight": "model-00001-of-00012.safetensors",
36
+ "model.layers.1.attention.query_layernorm.weight": "model-00001-of-00012.safetensors",
37
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00012.safetensors",
38
+ "model.layers.1.mlp.gate.expert_bias": "model-00001-of-00012.safetensors",
39
+ "model.layers.1.mlp.gate.weight": "model-00001-of-00012.safetensors",
40
+ "model.layers.1.mlp.shared_experts.down_proj.biases": "model-00001-of-00012.safetensors",
41
+ "model.layers.1.mlp.shared_experts.down_proj.scales": "model-00001-of-00012.safetensors",
42
+ "model.layers.1.mlp.shared_experts.down_proj.weight": "model-00001-of-00012.safetensors",
43
+ "model.layers.1.mlp.shared_experts.gate_proj.biases": "model-00001-of-00012.safetensors",
44
+ "model.layers.1.mlp.shared_experts.gate_proj.scales": "model-00001-of-00012.safetensors",
45
+ "model.layers.1.mlp.shared_experts.gate_proj.weight": "model-00001-of-00012.safetensors",
46
+ "model.layers.1.mlp.shared_experts.up_proj.biases": "model-00001-of-00012.safetensors",
47
+ "model.layers.1.mlp.shared_experts.up_proj.scales": "model-00001-of-00012.safetensors",
48
+ "model.layers.1.mlp.shared_experts.up_proj.weight": "model-00001-of-00012.safetensors",
49
+ "model.layers.1.mlp.switch_mlp.down_proj.biases": "model-00001-of-00012.safetensors",
50
+ "model.layers.1.mlp.switch_mlp.down_proj.scales": "model-00001-of-00012.safetensors",
51
+ "model.layers.1.mlp.switch_mlp.down_proj.weight": "model-00001-of-00012.safetensors",
52
+ "model.layers.1.mlp.switch_mlp.gate_proj.biases": "model-00001-of-00012.safetensors",
53
+ "model.layers.1.mlp.switch_mlp.gate_proj.scales": "model-00001-of-00012.safetensors",
54
+ "model.layers.1.mlp.switch_mlp.gate_proj.weight": "model-00001-of-00012.safetensors",
55
+ "model.layers.1.mlp.switch_mlp.up_proj.biases": "model-00001-of-00012.safetensors",
56
+ "model.layers.1.mlp.switch_mlp.up_proj.scales": "model-00001-of-00012.safetensors",
57
+ "model.layers.1.mlp.switch_mlp.up_proj.weight": "model-00001-of-00012.safetensors",
58
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00012.safetensors",
59
+ "model.layers.10.attention.dense.biases": "model-00004-of-00012.safetensors",
60
+ "model.layers.10.attention.dense.scales": "model-00004-of-00012.safetensors",
61
+ "model.layers.10.attention.dense.weight": "model-00004-of-00012.safetensors",
62
+ "model.layers.10.attention.key_layernorm.weight": "model-00004-of-00012.safetensors",
63
+ "model.layers.10.attention.query_key_value.biases": "model-00004-of-00012.safetensors",
64
+ "model.layers.10.attention.query_key_value.scales": "model-00004-of-00012.safetensors",
65
+ "model.layers.10.attention.query_key_value.weight": "model-00004-of-00012.safetensors",
66
+ "model.layers.10.attention.query_layernorm.weight": "model-00004-of-00012.safetensors",
67
+ "model.layers.10.input_layernorm.weight": "model-00004-of-00012.safetensors",
68
+ "model.layers.10.mlp.gate.expert_bias": "model-00004-of-00012.safetensors",
69
+ "model.layers.10.mlp.gate.weight": "model-00004-of-00012.safetensors",
70
+ "model.layers.10.mlp.shared_experts.down_proj.biases": "model-00004-of-00012.safetensors",
71
+ "model.layers.10.mlp.shared_experts.down_proj.scales": "model-00004-of-00012.safetensors",
72
+ "model.layers.10.mlp.shared_experts.down_proj.weight": "model-00004-of-00012.safetensors",
73
+ "model.layers.10.mlp.shared_experts.gate_proj.biases": "model-00004-of-00012.safetensors",
74
+ "model.layers.10.mlp.shared_experts.gate_proj.scales": "model-00004-of-00012.safetensors",
75
+ "model.layers.10.mlp.shared_experts.gate_proj.weight": "model-00004-of-00012.safetensors",
76
+ "model.layers.10.mlp.shared_experts.up_proj.biases": "model-00004-of-00012.safetensors",
77
+ "model.layers.10.mlp.shared_experts.up_proj.scales": "model-00004-of-00012.safetensors",
78
+ "model.layers.10.mlp.shared_experts.up_proj.weight": "model-00004-of-00012.safetensors",
79
+ "model.layers.10.mlp.switch_mlp.down_proj.biases": "model-00004-of-00012.safetensors",
80
+ "model.layers.10.mlp.switch_mlp.down_proj.scales": "model-00004-of-00012.safetensors",
81
+ "model.layers.10.mlp.switch_mlp.down_proj.weight": "model-00004-of-00012.safetensors",
82
+ "model.layers.10.mlp.switch_mlp.gate_proj.biases": "model-00004-of-00012.safetensors",
83
+ "model.layers.10.mlp.switch_mlp.gate_proj.scales": "model-00004-of-00012.safetensors",
84
+ "model.layers.10.mlp.switch_mlp.gate_proj.weight": "model-00004-of-00012.safetensors",
85
+ "model.layers.10.mlp.switch_mlp.up_proj.biases": "model-00004-of-00012.safetensors",
86
+ "model.layers.10.mlp.switch_mlp.up_proj.scales": "model-00004-of-00012.safetensors",
87
+ "model.layers.10.mlp.switch_mlp.up_proj.weight": "model-00004-of-00012.safetensors",
88
+ "model.layers.10.post_attention_layernorm.weight": "model-00004-of-00012.safetensors",
89
+ "model.layers.11.attention.dense.biases": "model-00004-of-00012.safetensors",
90
+ "model.layers.11.attention.dense.scales": "model-00004-of-00012.safetensors",
91
+ "model.layers.11.attention.dense.weight": "model-00004-of-00012.safetensors",
92
+ "model.layers.11.attention.key_layernorm.weight": "model-00004-of-00012.safetensors",
93
+ "model.layers.11.attention.query_key_value.biases": "model-00004-of-00012.safetensors",
94
+ "model.layers.11.attention.query_key_value.scales": "model-00004-of-00012.safetensors",
95
+ "model.layers.11.attention.query_key_value.weight": "model-00004-of-00012.safetensors",
96
+ "model.layers.11.attention.query_layernorm.weight": "model-00004-of-00012.safetensors",
97
+ "model.layers.11.input_layernorm.weight": "model-00005-of-00012.safetensors",
98
+ "model.layers.11.mlp.gate.expert_bias": "model-00005-of-00012.safetensors",
99
+ "model.layers.11.mlp.gate.weight": "model-00005-of-00012.safetensors",
100
+ "model.layers.11.mlp.shared_experts.down_proj.biases": "model-00005-of-00012.safetensors",
101
+ "model.layers.11.mlp.shared_experts.down_proj.scales": "model-00005-of-00012.safetensors",
102
+ "model.layers.11.mlp.shared_experts.down_proj.weight": "model-00005-of-00012.safetensors",
103
+ "model.layers.11.mlp.shared_experts.gate_proj.biases": "model-00005-of-00012.safetensors",
104
+ "model.layers.11.mlp.shared_experts.gate_proj.scales": "model-00005-of-00012.safetensors",
105
+ "model.layers.11.mlp.shared_experts.gate_proj.weight": "model-00005-of-00012.safetensors",
106
+ "model.layers.11.mlp.shared_experts.up_proj.biases": "model-00005-of-00012.safetensors",
107
+ "model.layers.11.mlp.shared_experts.up_proj.scales": "model-00005-of-00012.safetensors",
108
+ "model.layers.11.mlp.shared_experts.up_proj.weight": "model-00005-of-00012.safetensors",
109
+ "model.layers.11.mlp.switch_mlp.down_proj.biases": "model-00005-of-00012.safetensors",
110
+ "model.layers.11.mlp.switch_mlp.down_proj.scales": "model-00005-of-00012.safetensors",
111
+ "model.layers.11.mlp.switch_mlp.down_proj.weight": "model-00005-of-00012.safetensors",
112
+ "model.layers.11.mlp.switch_mlp.gate_proj.biases": "model-00004-of-00012.safetensors",
113
+ "model.layers.11.mlp.switch_mlp.gate_proj.scales": "model-00004-of-00012.safetensors",
114
+ "model.layers.11.mlp.switch_mlp.gate_proj.weight": "model-00004-of-00012.safetensors",
115
+ "model.layers.11.mlp.switch_mlp.up_proj.biases": "model-00004-of-00012.safetensors",
116
+ "model.layers.11.mlp.switch_mlp.up_proj.scales": "model-00004-of-00012.safetensors",
117
+ "model.layers.11.mlp.switch_mlp.up_proj.weight": "model-00004-of-00012.safetensors",
118
+ "model.layers.11.post_attention_layernorm.weight": "model-00005-of-00012.safetensors",
119
+ "model.layers.12.attention.dense.biases": "model-00005-of-00012.safetensors",
120
+ "model.layers.12.attention.dense.scales": "model-00005-of-00012.safetensors",
121
+ "model.layers.12.attention.dense.weight": "model-00005-of-00012.safetensors",
122
+ "model.layers.12.attention.key_layernorm.weight": "model-00005-of-00012.safetensors",
123
+ "model.layers.12.attention.query_key_value.biases": "model-00005-of-00012.safetensors",
124
+ "model.layers.12.attention.query_key_value.scales": "model-00005-of-00012.safetensors",
125
+ "model.layers.12.attention.query_key_value.weight": "model-00005-of-00012.safetensors",
126
+ "model.layers.12.attention.query_layernorm.weight": "model-00005-of-00012.safetensors",
127
+ "model.layers.12.input_layernorm.weight": "model-00005-of-00012.safetensors",
128
+ "model.layers.12.mlp.gate.expert_bias": "model-00005-of-00012.safetensors",
129
+ "model.layers.12.mlp.gate.weight": "model-00005-of-00012.safetensors",
130
+ "model.layers.12.mlp.shared_experts.down_proj.biases": "model-00005-of-00012.safetensors",
131
+ "model.layers.12.mlp.shared_experts.down_proj.scales": "model-00005-of-00012.safetensors",
132
+ "model.layers.12.mlp.shared_experts.down_proj.weight": "model-00005-of-00012.safetensors",
133
+ "model.layers.12.mlp.shared_experts.gate_proj.biases": "model-00005-of-00012.safetensors",
134
+ "model.layers.12.mlp.shared_experts.gate_proj.scales": "model-00005-of-00012.safetensors",
135
+ "model.layers.12.mlp.shared_experts.gate_proj.weight": "model-00005-of-00012.safetensors",
136
+ "model.layers.12.mlp.shared_experts.up_proj.biases": "model-00005-of-00012.safetensors",
137
+ "model.layers.12.mlp.shared_experts.up_proj.scales": "model-00005-of-00012.safetensors",
138
+ "model.layers.12.mlp.shared_experts.up_proj.weight": "model-00005-of-00012.safetensors",
139
+ "model.layers.12.mlp.switch_mlp.down_proj.biases": "model-00005-of-00012.safetensors",
140
+ "model.layers.12.mlp.switch_mlp.down_proj.scales": "model-00005-of-00012.safetensors",
141
+ "model.layers.12.mlp.switch_mlp.down_proj.weight": "model-00005-of-00012.safetensors",
142
+ "model.layers.12.mlp.switch_mlp.gate_proj.biases": "model-00005-of-00012.safetensors",
143
+ "model.layers.12.mlp.switch_mlp.gate_proj.scales": "model-00005-of-00012.safetensors",
144
+ "model.layers.12.mlp.switch_mlp.gate_proj.weight": "model-00005-of-00012.safetensors",
145
+ "model.layers.12.mlp.switch_mlp.up_proj.biases": "model-00005-of-00012.safetensors",
146
+ "model.layers.12.mlp.switch_mlp.up_proj.scales": "model-00005-of-00012.safetensors",
147
+ "model.layers.12.mlp.switch_mlp.up_proj.weight": "model-00005-of-00012.safetensors",
148
+ "model.layers.12.post_attention_layernorm.weight": "model-00005-of-00012.safetensors",
149
+ "model.layers.13.attention.dense.biases": "model-00005-of-00012.safetensors",
150
+ "model.layers.13.attention.dense.scales": "model-00005-of-00012.safetensors",
151
+ "model.layers.13.attention.dense.weight": "model-00005-of-00012.safetensors",
152
+ "model.layers.13.attention.key_layernorm.weight": "model-00005-of-00012.safetensors",
153
+ "model.layers.13.attention.query_key_value.biases": "model-00005-of-00012.safetensors",
154
+ "model.layers.13.attention.query_key_value.scales": "model-00005-of-00012.safetensors",
155
+ "model.layers.13.attention.query_key_value.weight": "model-00005-of-00012.safetensors",
156
+ "model.layers.13.attention.query_layernorm.weight": "model-00005-of-00012.safetensors",
157
+ "model.layers.13.input_layernorm.weight": "model-00005-of-00012.safetensors",
158
+ "model.layers.13.mlp.gate.expert_bias": "model-00005-of-00012.safetensors",
159
+ "model.layers.13.mlp.gate.weight": "model-00005-of-00012.safetensors",
160
+ "model.layers.13.mlp.shared_experts.down_proj.biases": "model-00005-of-00012.safetensors",
161
+ "model.layers.13.mlp.shared_experts.down_proj.scales": "model-00005-of-00012.safetensors",
162
+ "model.layers.13.mlp.shared_experts.down_proj.weight": "model-00005-of-00012.safetensors",
163
+ "model.layers.13.mlp.shared_experts.gate_proj.biases": "model-00005-of-00012.safetensors",
164
+ "model.layers.13.mlp.shared_experts.gate_proj.scales": "model-00005-of-00012.safetensors",
165
+ "model.layers.13.mlp.shared_experts.gate_proj.weight": "model-00005-of-00012.safetensors",
166
+ "model.layers.13.mlp.shared_experts.up_proj.biases": "model-00005-of-00012.safetensors",
167
+ "model.layers.13.mlp.shared_experts.up_proj.scales": "model-00005-of-00012.safetensors",
168
+ "model.layers.13.mlp.shared_experts.up_proj.weight": "model-00005-of-00012.safetensors",
169
+ "model.layers.13.mlp.switch_mlp.down_proj.biases": "model-00005-of-00012.safetensors",
170
+ "model.layers.13.mlp.switch_mlp.down_proj.scales": "model-00005-of-00012.safetensors",
171
+ "model.layers.13.mlp.switch_mlp.down_proj.weight": "model-00005-of-00012.safetensors",
172
+ "model.layers.13.mlp.switch_mlp.gate_proj.biases": "model-00005-of-00012.safetensors",
173
+ "model.layers.13.mlp.switch_mlp.gate_proj.scales": "model-00005-of-00012.safetensors",
174
+ "model.layers.13.mlp.switch_mlp.gate_proj.weight": "model-00005-of-00012.safetensors",
175
+ "model.layers.13.mlp.switch_mlp.up_proj.biases": "model-00005-of-00012.safetensors",
176
+ "model.layers.13.mlp.switch_mlp.up_proj.scales": "model-00005-of-00012.safetensors",
177
+ "model.layers.13.mlp.switch_mlp.up_proj.weight": "model-00005-of-00012.safetensors",
178
+ "model.layers.13.post_attention_layernorm.weight": "model-00005-of-00012.safetensors",
179
+ "model.layers.14.attention.dense.biases": "model-00005-of-00012.safetensors",
180
+ "model.layers.14.attention.dense.scales": "model-00005-of-00012.safetensors",
181
+ "model.layers.14.attention.dense.weight": "model-00005-of-00012.safetensors",
182
+ "model.layers.14.attention.key_layernorm.weight": "model-00005-of-00012.safetensors",
183
+ "model.layers.14.attention.query_key_value.biases": "model-00005-of-00012.safetensors",
184
+ "model.layers.14.attention.query_key_value.scales": "model-00005-of-00012.safetensors",
185
+ "model.layers.14.attention.query_key_value.weight": "model-00005-of-00012.safetensors",
186
+ "model.layers.14.attention.query_layernorm.weight": "model-00005-of-00012.safetensors",
187
+ "model.layers.14.input_layernorm.weight": "model-00006-of-00012.safetensors",
188
+ "model.layers.14.mlp.gate.expert_bias": "model-00006-of-00012.safetensors",
189
+ "model.layers.14.mlp.gate.weight": "model-00006-of-00012.safetensors",
190
+ "model.layers.14.mlp.shared_experts.down_proj.biases": "model-00006-of-00012.safetensors",
191
+ "model.layers.14.mlp.shared_experts.down_proj.scales": "model-00006-of-00012.safetensors",
192
+ "model.layers.14.mlp.shared_experts.down_proj.weight": "model-00006-of-00012.safetensors",
193
+ "model.layers.14.mlp.shared_experts.gate_proj.biases": "model-00006-of-00012.safetensors",
194
+ "model.layers.14.mlp.shared_experts.gate_proj.scales": "model-00006-of-00012.safetensors",
195
+ "model.layers.14.mlp.shared_experts.gate_proj.weight": "model-00006-of-00012.safetensors",
196
+ "model.layers.14.mlp.shared_experts.up_proj.biases": "model-00006-of-00012.safetensors",
197
+ "model.layers.14.mlp.shared_experts.up_proj.scales": "model-00006-of-00012.safetensors",
198
+ "model.layers.14.mlp.shared_experts.up_proj.weight": "model-00006-of-00012.safetensors",
199
+ "model.layers.14.mlp.switch_mlp.down_proj.biases": "model-00006-of-00012.safetensors",
200
+ "model.layers.14.mlp.switch_mlp.down_proj.scales": "model-00006-of-00012.safetensors",
201
+ "model.layers.14.mlp.switch_mlp.down_proj.weight": "model-00006-of-00012.safetensors",
202
+ "model.layers.14.mlp.switch_mlp.gate_proj.biases": "model-00005-of-00012.safetensors",
203
+ "model.layers.14.mlp.switch_mlp.gate_proj.scales": "model-00005-of-00012.safetensors",
204
+ "model.layers.14.mlp.switch_mlp.gate_proj.weight": "model-00005-of-00012.safetensors",
205
+ "model.layers.14.mlp.switch_mlp.up_proj.biases": "model-00006-of-00012.safetensors",
206
+ "model.layers.14.mlp.switch_mlp.up_proj.scales": "model-00006-of-00012.safetensors",
207
+ "model.layers.14.mlp.switch_mlp.up_proj.weight": "model-00006-of-00012.safetensors",
208
+ "model.layers.14.post_attention_layernorm.weight": "model-00006-of-00012.safetensors",
209
+ "model.layers.15.attention.dense.biases": "model-00006-of-00012.safetensors",
210
+ "model.layers.15.attention.dense.scales": "model-00006-of-00012.safetensors",
211
+ "model.layers.15.attention.dense.weight": "model-00006-of-00012.safetensors",
212
+ "model.layers.15.attention.key_layernorm.weight": "model-00006-of-00012.safetensors",
213
+ "model.layers.15.attention.query_key_value.biases": "model-00006-of-00012.safetensors",
214
+ "model.layers.15.attention.query_key_value.scales": "model-00006-of-00012.safetensors",
215
+ "model.layers.15.attention.query_key_value.weight": "model-00006-of-00012.safetensors",
216
+ "model.layers.15.attention.query_layernorm.weight": "model-00006-of-00012.safetensors",
217
+ "model.layers.15.input_layernorm.weight": "model-00006-of-00012.safetensors",
218
+ "model.layers.15.mlp.gate.expert_bias": "model-00006-of-00012.safetensors",
219
+ "model.layers.15.mlp.gate.weight": "model-00006-of-00012.safetensors",
220
+ "model.layers.15.mlp.shared_experts.down_proj.biases": "model-00006-of-00012.safetensors",
221
+ "model.layers.15.mlp.shared_experts.down_proj.scales": "model-00006-of-00012.safetensors",
222
+ "model.layers.15.mlp.shared_experts.down_proj.weight": "model-00006-of-00012.safetensors",
223
+ "model.layers.15.mlp.shared_experts.gate_proj.biases": "model-00006-of-00012.safetensors",
224
+ "model.layers.15.mlp.shared_experts.gate_proj.scales": "model-00006-of-00012.safetensors",
225
+ "model.layers.15.mlp.shared_experts.gate_proj.weight": "model-00006-of-00012.safetensors",
226
+ "model.layers.15.mlp.shared_experts.up_proj.biases": "model-00006-of-00012.safetensors",
227
+ "model.layers.15.mlp.shared_experts.up_proj.scales": "model-00006-of-00012.safetensors",
228
+ "model.layers.15.mlp.shared_experts.up_proj.weight": "model-00006-of-00012.safetensors",
229
+ "model.layers.15.mlp.switch_mlp.down_proj.biases": "model-00006-of-00012.safetensors",
230
+ "model.layers.15.mlp.switch_mlp.down_proj.scales": "model-00006-of-00012.safetensors",
231
+ "model.layers.15.mlp.switch_mlp.down_proj.weight": "model-00006-of-00012.safetensors",
232
+ "model.layers.15.mlp.switch_mlp.gate_proj.biases": "model-00006-of-00012.safetensors",
233
+ "model.layers.15.mlp.switch_mlp.gate_proj.scales": "model-00006-of-00012.safetensors",
234
+ "model.layers.15.mlp.switch_mlp.gate_proj.weight": "model-00006-of-00012.safetensors",
235
+ "model.layers.15.mlp.switch_mlp.up_proj.biases": "model-00006-of-00012.safetensors",
236
+ "model.layers.15.mlp.switch_mlp.up_proj.scales": "model-00006-of-00012.safetensors",
237
+ "model.layers.15.mlp.switch_mlp.up_proj.weight": "model-00006-of-00012.safetensors",
238
+ "model.layers.15.post_attention_layernorm.weight": "model-00006-of-00012.safetensors",
239
+ "model.layers.16.attention.dense.biases": "model-00006-of-00012.safetensors",
240
+ "model.layers.16.attention.dense.scales": "model-00006-of-00012.safetensors",
241
+ "model.layers.16.attention.dense.weight": "model-00006-of-00012.safetensors",
242
+ "model.layers.16.attention.key_layernorm.weight": "model-00006-of-00012.safetensors",
243
+ "model.layers.16.attention.query_key_value.biases": "model-00006-of-00012.safetensors",
244
+ "model.layers.16.attention.query_key_value.scales": "model-00006-of-00012.safetensors",
245
+ "model.layers.16.attention.query_key_value.weight": "model-00006-of-00012.safetensors",
246
+ "model.layers.16.attention.query_layernorm.weight": "model-00006-of-00012.safetensors",
247
+ "model.layers.16.input_layernorm.weight": "model-00006-of-00012.safetensors",
248
+ "model.layers.16.mlp.gate.expert_bias": "model-00006-of-00012.safetensors",
249
+ "model.layers.16.mlp.gate.weight": "model-00006-of-00012.safetensors",
250
+ "model.layers.16.mlp.shared_experts.down_proj.biases": "model-00006-of-00012.safetensors",
251
+ "model.layers.16.mlp.shared_experts.down_proj.scales": "model-00006-of-00012.safetensors",
252
+ "model.layers.16.mlp.shared_experts.down_proj.weight": "model-00006-of-00012.safetensors",
253
+ "model.layers.16.mlp.shared_experts.gate_proj.biases": "model-00006-of-00012.safetensors",
254
+ "model.layers.16.mlp.shared_experts.gate_proj.scales": "model-00006-of-00012.safetensors",
255
+ "model.layers.16.mlp.shared_experts.gate_proj.weight": "model-00006-of-00012.safetensors",
256
+ "model.layers.16.mlp.shared_experts.up_proj.biases": "model-00006-of-00012.safetensors",
257
+ "model.layers.16.mlp.shared_experts.up_proj.scales": "model-00006-of-00012.safetensors",
258
+ "model.layers.16.mlp.shared_experts.up_proj.weight": "model-00006-of-00012.safetensors",
259
+ "model.layers.16.mlp.switch_mlp.down_proj.biases": "model-00006-of-00012.safetensors",
260
+ "model.layers.16.mlp.switch_mlp.down_proj.scales": "model-00006-of-00012.safetensors",
261
+ "model.layers.16.mlp.switch_mlp.down_proj.weight": "model-00006-of-00012.safetensors",
262
+ "model.layers.16.mlp.switch_mlp.gate_proj.biases": "model-00006-of-00012.safetensors",
263
+ "model.layers.16.mlp.switch_mlp.gate_proj.scales": "model-00006-of-00012.safetensors",
264
+ "model.layers.16.mlp.switch_mlp.gate_proj.weight": "model-00006-of-00012.safetensors",
265
+ "model.layers.16.mlp.switch_mlp.up_proj.biases": "model-00006-of-00012.safetensors",
266
+ "model.layers.16.mlp.switch_mlp.up_proj.scales": "model-00006-of-00012.safetensors",
267
+ "model.layers.16.mlp.switch_mlp.up_proj.weight": "model-00006-of-00012.safetensors",
268
+ "model.layers.16.post_attention_layernorm.weight": "model-00006-of-00012.safetensors",
269
+ "model.layers.17.attention.dense.biases": "model-00006-of-00012.safetensors",
270
+ "model.layers.17.attention.dense.scales": "model-00006-of-00012.safetensors",
271
+ "model.layers.17.attention.dense.weight": "model-00006-of-00012.safetensors",
272
+ "model.layers.17.attention.key_layernorm.weight": "model-00006-of-00012.safetensors",
273
+ "model.layers.17.attention.query_key_value.biases": "model-00006-of-00012.safetensors",
274
+ "model.layers.17.attention.query_key_value.scales": "model-00006-of-00012.safetensors",
275
+ "model.layers.17.attention.query_key_value.weight": "model-00006-of-00012.safetensors",
276
+ "model.layers.17.attention.query_layernorm.weight": "model-00006-of-00012.safetensors",
277
+ "model.layers.17.input_layernorm.weight": "model-00007-of-00012.safetensors",
278
+ "model.layers.17.mlp.gate.expert_bias": "model-00007-of-00012.safetensors",
279
+ "model.layers.17.mlp.gate.weight": "model-00007-of-00012.safetensors",
280
+ "model.layers.17.mlp.shared_experts.down_proj.biases": "model-00007-of-00012.safetensors",
281
+ "model.layers.17.mlp.shared_experts.down_proj.scales": "model-00007-of-00012.safetensors",
282
+ "model.layers.17.mlp.shared_experts.down_proj.weight": "model-00007-of-00012.safetensors",
283
+ "model.layers.17.mlp.shared_experts.gate_proj.biases": "model-00007-of-00012.safetensors",
284
+ "model.layers.17.mlp.shared_experts.gate_proj.scales": "model-00007-of-00012.safetensors",
285
+ "model.layers.17.mlp.shared_experts.gate_proj.weight": "model-00007-of-00012.safetensors",
286
+ "model.layers.17.mlp.shared_experts.up_proj.biases": "model-00007-of-00012.safetensors",
287
+ "model.layers.17.mlp.shared_experts.up_proj.scales": "model-00007-of-00012.safetensors",
288
+ "model.layers.17.mlp.shared_experts.up_proj.weight": "model-00007-of-00012.safetensors",
289
+ "model.layers.17.mlp.switch_mlp.down_proj.biases": "model-00007-of-00012.safetensors",
290
+ "model.layers.17.mlp.switch_mlp.down_proj.scales": "model-00007-of-00012.safetensors",
291
+ "model.layers.17.mlp.switch_mlp.down_proj.weight": "model-00007-of-00012.safetensors",
292
+ "model.layers.17.mlp.switch_mlp.gate_proj.biases": "model-00007-of-00012.safetensors",
293
+ "model.layers.17.mlp.switch_mlp.gate_proj.scales": "model-00007-of-00012.safetensors",
294
+ "model.layers.17.mlp.switch_mlp.gate_proj.weight": "model-00007-of-00012.safetensors",
295
+ "model.layers.17.mlp.switch_mlp.up_proj.biases": "model-00007-of-00012.safetensors",
296
+ "model.layers.17.mlp.switch_mlp.up_proj.scales": "model-00007-of-00012.safetensors",
297
+ "model.layers.17.mlp.switch_mlp.up_proj.weight": "model-00007-of-00012.safetensors",
298
+ "model.layers.17.post_attention_layernorm.weight": "model-00007-of-00012.safetensors",
299
+ "model.layers.18.attention.dense.biases": "model-00007-of-00012.safetensors",
300
+ "model.layers.18.attention.dense.scales": "model-00007-of-00012.safetensors",
301
+ "model.layers.18.attention.dense.weight": "model-00007-of-00012.safetensors",
302
+ "model.layers.18.attention.key_layernorm.weight": "model-00007-of-00012.safetensors",
303
+ "model.layers.18.attention.query_key_value.biases": "model-00007-of-00012.safetensors",
304
+ "model.layers.18.attention.query_key_value.scales": "model-00007-of-00012.safetensors",
305
+ "model.layers.18.attention.query_key_value.weight": "model-00007-of-00012.safetensors",
306
+ "model.layers.18.attention.query_layernorm.weight": "model-00007-of-00012.safetensors",
307
+ "model.layers.18.input_layernorm.weight": "model-00007-of-00012.safetensors",
308
+ "model.layers.18.mlp.gate.expert_bias": "model-00007-of-00012.safetensors",
309
+ "model.layers.18.mlp.gate.weight": "model-00007-of-00012.safetensors",
310
+ "model.layers.18.mlp.shared_experts.down_proj.biases": "model-00007-of-00012.safetensors",
311
+ "model.layers.18.mlp.shared_experts.down_proj.scales": "model-00007-of-00012.safetensors",
312
+ "model.layers.18.mlp.shared_experts.down_proj.weight": "model-00007-of-00012.safetensors",
313
+ "model.layers.18.mlp.shared_experts.gate_proj.biases": "model-00007-of-00012.safetensors",
314
+ "model.layers.18.mlp.shared_experts.gate_proj.scales": "model-00007-of-00012.safetensors",
315
+ "model.layers.18.mlp.shared_experts.gate_proj.weight": "model-00007-of-00012.safetensors",
316
+ "model.layers.18.mlp.shared_experts.up_proj.biases": "model-00007-of-00012.safetensors",
317
+ "model.layers.18.mlp.shared_experts.up_proj.scales": "model-00007-of-00012.safetensors",
318
+ "model.layers.18.mlp.shared_experts.up_proj.weight": "model-00007-of-00012.safetensors",
319
+ "model.layers.18.mlp.switch_mlp.down_proj.biases": "model-00007-of-00012.safetensors",
320
+ "model.layers.18.mlp.switch_mlp.down_proj.scales": "model-00007-of-00012.safetensors",
321
+ "model.layers.18.mlp.switch_mlp.down_proj.weight": "model-00007-of-00012.safetensors",
322
+ "model.layers.18.mlp.switch_mlp.gate_proj.biases": "model-00007-of-00012.safetensors",
323
+ "model.layers.18.mlp.switch_mlp.gate_proj.scales": "model-00007-of-00012.safetensors",
324
+ "model.layers.18.mlp.switch_mlp.gate_proj.weight": "model-00007-of-00012.safetensors",
325
+ "model.layers.18.mlp.switch_mlp.up_proj.biases": "model-00007-of-00012.safetensors",
326
+ "model.layers.18.mlp.switch_mlp.up_proj.scales": "model-00007-of-00012.safetensors",
327
+ "model.layers.18.mlp.switch_mlp.up_proj.weight": "model-00007-of-00012.safetensors",
328
+ "model.layers.18.post_attention_layernorm.weight": "model-00007-of-00012.safetensors",
329
+ "model.layers.19.attention.dense.biases": "model-00007-of-00012.safetensors",
330
+ "model.layers.19.attention.dense.scales": "model-00007-of-00012.safetensors",
331
+ "model.layers.19.attention.dense.weight": "model-00007-of-00012.safetensors",
332
+ "model.layers.19.attention.key_layernorm.weight": "model-00007-of-00012.safetensors",
333
+ "model.layers.19.attention.query_key_value.biases": "model-00007-of-00012.safetensors",
334
+ "model.layers.19.attention.query_key_value.scales": "model-00007-of-00012.safetensors",
335
+ "model.layers.19.attention.query_key_value.weight": "model-00007-of-00012.safetensors",
336
+ "model.layers.19.attention.query_layernorm.weight": "model-00007-of-00012.safetensors",
337
+ "model.layers.19.input_layernorm.weight": "model-00008-of-00012.safetensors",
338
+ "model.layers.19.mlp.gate.expert_bias": "model-00008-of-00012.safetensors",
339
+ "model.layers.19.mlp.gate.weight": "model-00008-of-00012.safetensors",
340
+ "model.layers.19.mlp.shared_experts.down_proj.biases": "model-00008-of-00012.safetensors",
341
+ "model.layers.19.mlp.shared_experts.down_proj.scales": "model-00008-of-00012.safetensors",
342
+ "model.layers.19.mlp.shared_experts.down_proj.weight": "model-00008-of-00012.safetensors",
343
+ "model.layers.19.mlp.shared_experts.gate_proj.biases": "model-00008-of-00012.safetensors",
344
+ "model.layers.19.mlp.shared_experts.gate_proj.scales": "model-00008-of-00012.safetensors",
345
+ "model.layers.19.mlp.shared_experts.gate_proj.weight": "model-00008-of-00012.safetensors",
346
+ "model.layers.19.mlp.shared_experts.up_proj.biases": "model-00008-of-00012.safetensors",
347
+ "model.layers.19.mlp.shared_experts.up_proj.scales": "model-00008-of-00012.safetensors",
348
+ "model.layers.19.mlp.shared_experts.up_proj.weight": "model-00008-of-00012.safetensors",
349
+ "model.layers.19.mlp.switch_mlp.down_proj.biases": "model-00008-of-00012.safetensors",
350
+ "model.layers.19.mlp.switch_mlp.down_proj.scales": "model-00008-of-00012.safetensors",
351
+ "model.layers.19.mlp.switch_mlp.down_proj.weight": "model-00008-of-00012.safetensors",
352
+ "model.layers.19.mlp.switch_mlp.gate_proj.biases": "model-00007-of-00012.safetensors",
353
+ "model.layers.19.mlp.switch_mlp.gate_proj.scales": "model-00007-of-00012.safetensors",
354
+ "model.layers.19.mlp.switch_mlp.gate_proj.weight": "model-00007-of-00012.safetensors",
355
+ "model.layers.19.mlp.switch_mlp.up_proj.biases": "model-00007-of-00012.safetensors",
356
+ "model.layers.19.mlp.switch_mlp.up_proj.scales": "model-00007-of-00012.safetensors",
357
+ "model.layers.19.mlp.switch_mlp.up_proj.weight": "model-00007-of-00012.safetensors",
358
+ "model.layers.19.post_attention_layernorm.weight": "model-00008-of-00012.safetensors",
359
+ "model.layers.2.attention.dense.biases": "model-00001-of-00012.safetensors",
360
+ "model.layers.2.attention.dense.scales": "model-00001-of-00012.safetensors",
361
+ "model.layers.2.attention.dense.weight": "model-00001-of-00012.safetensors",
362
+ "model.layers.2.attention.key_layernorm.weight": "model-00001-of-00012.safetensors",
363
+ "model.layers.2.attention.query_key_value.biases": "model-00001-of-00012.safetensors",
364
+ "model.layers.2.attention.query_key_value.scales": "model-00001-of-00012.safetensors",
365
+ "model.layers.2.attention.query_key_value.weight": "model-00001-of-00012.safetensors",
366
+ "model.layers.2.attention.query_layernorm.weight": "model-00001-of-00012.safetensors",
367
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00012.safetensors",
368
+ "model.layers.2.mlp.gate.expert_bias": "model-00001-of-00012.safetensors",
369
+ "model.layers.2.mlp.gate.weight": "model-00001-of-00012.safetensors",
370
+ "model.layers.2.mlp.shared_experts.down_proj.biases": "model-00001-of-00012.safetensors",
371
+ "model.layers.2.mlp.shared_experts.down_proj.scales": "model-00001-of-00012.safetensors",
372
+ "model.layers.2.mlp.shared_experts.down_proj.weight": "model-00001-of-00012.safetensors",
373
+ "model.layers.2.mlp.shared_experts.gate_proj.biases": "model-00001-of-00012.safetensors",
374
+ "model.layers.2.mlp.shared_experts.gate_proj.scales": "model-00001-of-00012.safetensors",
375
+ "model.layers.2.mlp.shared_experts.gate_proj.weight": "model-00001-of-00012.safetensors",
376
+ "model.layers.2.mlp.shared_experts.up_proj.biases": "model-00001-of-00012.safetensors",
377
+ "model.layers.2.mlp.shared_experts.up_proj.scales": "model-00001-of-00012.safetensors",
378
+ "model.layers.2.mlp.shared_experts.up_proj.weight": "model-00001-of-00012.safetensors",
379
+ "model.layers.2.mlp.switch_mlp.down_proj.biases": "model-00001-of-00012.safetensors",
380
+ "model.layers.2.mlp.switch_mlp.down_proj.scales": "model-00001-of-00012.safetensors",
381
+ "model.layers.2.mlp.switch_mlp.down_proj.weight": "model-00001-of-00012.safetensors",
382
+ "model.layers.2.mlp.switch_mlp.gate_proj.biases": "model-00001-of-00012.safetensors",
383
+ "model.layers.2.mlp.switch_mlp.gate_proj.scales": "model-00001-of-00012.safetensors",
384
+ "model.layers.2.mlp.switch_mlp.gate_proj.weight": "model-00001-of-00012.safetensors",
385
+ "model.layers.2.mlp.switch_mlp.up_proj.biases": "model-00001-of-00012.safetensors",
386
+ "model.layers.2.mlp.switch_mlp.up_proj.scales": "model-00001-of-00012.safetensors",
387
+ "model.layers.2.mlp.switch_mlp.up_proj.weight": "model-00001-of-00012.safetensors",
388
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00012.safetensors",
389
+ "model.layers.20.attention.dense.biases": "model-00008-of-00012.safetensors",
390
+ "model.layers.20.attention.dense.scales": "model-00008-of-00012.safetensors",
391
+ "model.layers.20.attention.dense.weight": "model-00008-of-00012.safetensors",
392
+ "model.layers.20.attention.key_layernorm.weight": "model-00008-of-00012.safetensors",
393
+ "model.layers.20.attention.query_key_value.biases": "model-00008-of-00012.safetensors",
394
+ "model.layers.20.attention.query_key_value.scales": "model-00008-of-00012.safetensors",
395
+ "model.layers.20.attention.query_key_value.weight": "model-00008-of-00012.safetensors",
396
+ "model.layers.20.attention.query_layernorm.weight": "model-00008-of-00012.safetensors",
397
+ "model.layers.20.input_layernorm.weight": "model-00008-of-00012.safetensors",
398
+ "model.layers.20.mlp.gate.expert_bias": "model-00008-of-00012.safetensors",
399
+ "model.layers.20.mlp.gate.weight": "model-00008-of-00012.safetensors",
400
+ "model.layers.20.mlp.shared_experts.down_proj.biases": "model-00008-of-00012.safetensors",
401
+ "model.layers.20.mlp.shared_experts.down_proj.scales": "model-00008-of-00012.safetensors",
402
+ "model.layers.20.mlp.shared_experts.down_proj.weight": "model-00008-of-00012.safetensors",
403
+ "model.layers.20.mlp.shared_experts.gate_proj.biases": "model-00008-of-00012.safetensors",
404
+ "model.layers.20.mlp.shared_experts.gate_proj.scales": "model-00008-of-00012.safetensors",
405
+ "model.layers.20.mlp.shared_experts.gate_proj.weight": "model-00008-of-00012.safetensors",
406
+ "model.layers.20.mlp.shared_experts.up_proj.biases": "model-00008-of-00012.safetensors",
407
+ "model.layers.20.mlp.shared_experts.up_proj.scales": "model-00008-of-00012.safetensors",
408
+ "model.layers.20.mlp.shared_experts.up_proj.weight": "model-00008-of-00012.safetensors",
409
+ "model.layers.20.mlp.switch_mlp.down_proj.biases": "model-00008-of-00012.safetensors",
410
+ "model.layers.20.mlp.switch_mlp.down_proj.scales": "model-00008-of-00012.safetensors",
411
+ "model.layers.20.mlp.switch_mlp.down_proj.weight": "model-00008-of-00012.safetensors",
412
+ "model.layers.20.mlp.switch_mlp.gate_proj.biases": "model-00008-of-00012.safetensors",
413
+ "model.layers.20.mlp.switch_mlp.gate_proj.scales": "model-00008-of-00012.safetensors",
414
+ "model.layers.20.mlp.switch_mlp.gate_proj.weight": "model-00008-of-00012.safetensors",
415
+ "model.layers.20.mlp.switch_mlp.up_proj.biases": "model-00008-of-00012.safetensors",
416
+ "model.layers.20.mlp.switch_mlp.up_proj.scales": "model-00008-of-00012.safetensors",
417
+ "model.layers.20.mlp.switch_mlp.up_proj.weight": "model-00008-of-00012.safetensors",
418
+ "model.layers.20.post_attention_layernorm.weight": "model-00008-of-00012.safetensors",
419
+ "model.layers.21.attention.dense.biases": "model-00008-of-00012.safetensors",
420
+ "model.layers.21.attention.dense.scales": "model-00008-of-00012.safetensors",
421
+ "model.layers.21.attention.dense.weight": "model-00008-of-00012.safetensors",
422
+ "model.layers.21.attention.key_layernorm.weight": "model-00008-of-00012.safetensors",
423
+ "model.layers.21.attention.query_key_value.biases": "model-00008-of-00012.safetensors",
424
+ "model.layers.21.attention.query_key_value.scales": "model-00008-of-00012.safetensors",
425
+ "model.layers.21.attention.query_key_value.weight": "model-00008-of-00012.safetensors",
426
+ "model.layers.21.attention.query_layernorm.weight": "model-00008-of-00012.safetensors",
427
+ "model.layers.21.input_layernorm.weight": "model-00008-of-00012.safetensors",
428
+ "model.layers.21.mlp.gate.expert_bias": "model-00008-of-00012.safetensors",
429
+ "model.layers.21.mlp.gate.weight": "model-00008-of-00012.safetensors",
430
+ "model.layers.21.mlp.shared_experts.down_proj.biases": "model-00008-of-00012.safetensors",
431
+ "model.layers.21.mlp.shared_experts.down_proj.scales": "model-00008-of-00012.safetensors",
432
+ "model.layers.21.mlp.shared_experts.down_proj.weight": "model-00008-of-00012.safetensors",
433
+ "model.layers.21.mlp.shared_experts.gate_proj.biases": "model-00008-of-00012.safetensors",
434
+ "model.layers.21.mlp.shared_experts.gate_proj.scales": "model-00008-of-00012.safetensors",
435
+ "model.layers.21.mlp.shared_experts.gate_proj.weight": "model-00008-of-00012.safetensors",
436
+ "model.layers.21.mlp.shared_experts.up_proj.biases": "model-00008-of-00012.safetensors",
437
+ "model.layers.21.mlp.shared_experts.up_proj.scales": "model-00008-of-00012.safetensors",
438
+ "model.layers.21.mlp.shared_experts.up_proj.weight": "model-00008-of-00012.safetensors",
439
+ "model.layers.21.mlp.switch_mlp.down_proj.biases": "model-00008-of-00012.safetensors",
440
+ "model.layers.21.mlp.switch_mlp.down_proj.scales": "model-00008-of-00012.safetensors",
441
+ "model.layers.21.mlp.switch_mlp.down_proj.weight": "model-00008-of-00012.safetensors",
442
+ "model.layers.21.mlp.switch_mlp.gate_proj.biases": "model-00008-of-00012.safetensors",
443
+ "model.layers.21.mlp.switch_mlp.gate_proj.scales": "model-00008-of-00012.safetensors",
444
+ "model.layers.21.mlp.switch_mlp.gate_proj.weight": "model-00008-of-00012.safetensors",
445
+ "model.layers.21.mlp.switch_mlp.up_proj.biases": "model-00008-of-00012.safetensors",
446
+ "model.layers.21.mlp.switch_mlp.up_proj.scales": "model-00008-of-00012.safetensors",
447
+ "model.layers.21.mlp.switch_mlp.up_proj.weight": "model-00008-of-00012.safetensors",
448
+ "model.layers.21.post_attention_layernorm.weight": "model-00008-of-00012.safetensors",
449
+ "model.layers.22.attention.dense.biases": "model-00008-of-00012.safetensors",
450
+ "model.layers.22.attention.dense.scales": "model-00008-of-00012.safetensors",
451
+ "model.layers.22.attention.dense.weight": "model-00008-of-00012.safetensors",
452
+ "model.layers.22.attention.key_layernorm.weight": "model-00008-of-00012.safetensors",
453
+ "model.layers.22.attention.query_key_value.biases": "model-00008-of-00012.safetensors",
454
+ "model.layers.22.attention.query_key_value.scales": "model-00008-of-00012.safetensors",
455
+ "model.layers.22.attention.query_key_value.weight": "model-00008-of-00012.safetensors",
456
+ "model.layers.22.attention.query_layernorm.weight": "model-00008-of-00012.safetensors",
457
+ "model.layers.22.input_layernorm.weight": "model-00009-of-00012.safetensors",
458
+ "model.layers.22.mlp.gate.expert_bias": "model-00009-of-00012.safetensors",
459
+ "model.layers.22.mlp.gate.weight": "model-00009-of-00012.safetensors",
460
+ "model.layers.22.mlp.shared_experts.down_proj.biases": "model-00009-of-00012.safetensors",
461
+ "model.layers.22.mlp.shared_experts.down_proj.scales": "model-00009-of-00012.safetensors",
462
+ "model.layers.22.mlp.shared_experts.down_proj.weight": "model-00009-of-00012.safetensors",
463
+ "model.layers.22.mlp.shared_experts.gate_proj.biases": "model-00009-of-00012.safetensors",
464
+ "model.layers.22.mlp.shared_experts.gate_proj.scales": "model-00009-of-00012.safetensors",
465
+ "model.layers.22.mlp.shared_experts.gate_proj.weight": "model-00009-of-00012.safetensors",
466
+ "model.layers.22.mlp.shared_experts.up_proj.biases": "model-00009-of-00012.safetensors",
467
+ "model.layers.22.mlp.shared_experts.up_proj.scales": "model-00009-of-00012.safetensors",
468
+ "model.layers.22.mlp.shared_experts.up_proj.weight": "model-00009-of-00012.safetensors",
469
+ "model.layers.22.mlp.switch_mlp.down_proj.biases": "model-00009-of-00012.safetensors",
470
+ "model.layers.22.mlp.switch_mlp.down_proj.scales": "model-00009-of-00012.safetensors",
471
+ "model.layers.22.mlp.switch_mlp.down_proj.weight": "model-00009-of-00012.safetensors",
472
+ "model.layers.22.mlp.switch_mlp.gate_proj.biases": "model-00008-of-00012.safetensors",
473
+ "model.layers.22.mlp.switch_mlp.gate_proj.scales": "model-00008-of-00012.safetensors",
474
+ "model.layers.22.mlp.switch_mlp.gate_proj.weight": "model-00008-of-00012.safetensors",
475
+ "model.layers.22.mlp.switch_mlp.up_proj.biases": "model-00009-of-00012.safetensors",
476
+ "model.layers.22.mlp.switch_mlp.up_proj.scales": "model-00009-of-00012.safetensors",
477
+ "model.layers.22.mlp.switch_mlp.up_proj.weight": "model-00009-of-00012.safetensors",
478
+ "model.layers.22.post_attention_layernorm.weight": "model-00009-of-00012.safetensors",
479
+ "model.layers.23.attention.dense.biases": "model-00009-of-00012.safetensors",
480
+ "model.layers.23.attention.dense.scales": "model-00009-of-00012.safetensors",
481
+ "model.layers.23.attention.dense.weight": "model-00009-of-00012.safetensors",
482
+ "model.layers.23.attention.key_layernorm.weight": "model-00009-of-00012.safetensors",
483
+ "model.layers.23.attention.query_key_value.biases": "model-00009-of-00012.safetensors",
484
+ "model.layers.23.attention.query_key_value.scales": "model-00009-of-00012.safetensors",
485
+ "model.layers.23.attention.query_key_value.weight": "model-00009-of-00012.safetensors",
486
+ "model.layers.23.attention.query_layernorm.weight": "model-00009-of-00012.safetensors",
487
+ "model.layers.23.input_layernorm.weight": "model-00009-of-00012.safetensors",
488
+ "model.layers.23.mlp.gate.expert_bias": "model-00009-of-00012.safetensors",
489
+ "model.layers.23.mlp.gate.weight": "model-00009-of-00012.safetensors",
490
+ "model.layers.23.mlp.shared_experts.down_proj.biases": "model-00009-of-00012.safetensors",
491
+ "model.layers.23.mlp.shared_experts.down_proj.scales": "model-00009-of-00012.safetensors",
492
+ "model.layers.23.mlp.shared_experts.down_proj.weight": "model-00009-of-00012.safetensors",
493
+ "model.layers.23.mlp.shared_experts.gate_proj.biases": "model-00009-of-00012.safetensors",
494
+ "model.layers.23.mlp.shared_experts.gate_proj.scales": "model-00009-of-00012.safetensors",
495
+ "model.layers.23.mlp.shared_experts.gate_proj.weight": "model-00009-of-00012.safetensors",
496
+ "model.layers.23.mlp.shared_experts.up_proj.biases": "model-00009-of-00012.safetensors",
497
+ "model.layers.23.mlp.shared_experts.up_proj.scales": "model-00009-of-00012.safetensors",
498
+ "model.layers.23.mlp.shared_experts.up_proj.weight": "model-00009-of-00012.safetensors",
499
+ "model.layers.23.mlp.switch_mlp.down_proj.biases": "model-00009-of-00012.safetensors",
500
+ "model.layers.23.mlp.switch_mlp.down_proj.scales": "model-00009-of-00012.safetensors",
501
+ "model.layers.23.mlp.switch_mlp.down_proj.weight": "model-00009-of-00012.safetensors",
502
+ "model.layers.23.mlp.switch_mlp.gate_proj.biases": "model-00009-of-00012.safetensors",
503
+ "model.layers.23.mlp.switch_mlp.gate_proj.scales": "model-00009-of-00012.safetensors",
504
+ "model.layers.23.mlp.switch_mlp.gate_proj.weight": "model-00009-of-00012.safetensors",
505
+ "model.layers.23.mlp.switch_mlp.up_proj.biases": "model-00009-of-00012.safetensors",
506
+ "model.layers.23.mlp.switch_mlp.up_proj.scales": "model-00009-of-00012.safetensors",
507
+ "model.layers.23.mlp.switch_mlp.up_proj.weight": "model-00009-of-00012.safetensors",
508
+ "model.layers.23.post_attention_layernorm.weight": "model-00009-of-00012.safetensors",
509
+ "model.layers.24.attention.dense.biases": "model-00009-of-00012.safetensors",
510
+ "model.layers.24.attention.dense.scales": "model-00009-of-00012.safetensors",
511
+ "model.layers.24.attention.dense.weight": "model-00009-of-00012.safetensors",
512
+ "model.layers.24.attention.key_layernorm.weight": "model-00009-of-00012.safetensors",
513
+ "model.layers.24.attention.query_key_value.biases": "model-00009-of-00012.safetensors",
514
+ "model.layers.24.attention.query_key_value.scales": "model-00009-of-00012.safetensors",
515
+ "model.layers.24.attention.query_key_value.weight": "model-00009-of-00012.safetensors",
516
+ "model.layers.24.attention.query_layernorm.weight": "model-00009-of-00012.safetensors",
517
+ "model.layers.24.input_layernorm.weight": "model-00009-of-00012.safetensors",
518
+ "model.layers.24.mlp.gate.expert_bias": "model-00009-of-00012.safetensors",
519
+ "model.layers.24.mlp.gate.weight": "model-00009-of-00012.safetensors",
520
+ "model.layers.24.mlp.shared_experts.down_proj.biases": "model-00009-of-00012.safetensors",
521
+ "model.layers.24.mlp.shared_experts.down_proj.scales": "model-00009-of-00012.safetensors",
522
+ "model.layers.24.mlp.shared_experts.down_proj.weight": "model-00009-of-00012.safetensors",
523
+ "model.layers.24.mlp.shared_experts.gate_proj.biases": "model-00009-of-00012.safetensors",
524
+ "model.layers.24.mlp.shared_experts.gate_proj.scales": "model-00009-of-00012.safetensors",
525
+ "model.layers.24.mlp.shared_experts.gate_proj.weight": "model-00009-of-00012.safetensors",
526
+ "model.layers.24.mlp.shared_experts.up_proj.biases": "model-00009-of-00012.safetensors",
527
+ "model.layers.24.mlp.shared_experts.up_proj.scales": "model-00009-of-00012.safetensors",
528
+ "model.layers.24.mlp.shared_experts.up_proj.weight": "model-00009-of-00012.safetensors",
529
+ "model.layers.24.mlp.switch_mlp.down_proj.biases": "model-00009-of-00012.safetensors",
530
+ "model.layers.24.mlp.switch_mlp.down_proj.scales": "model-00009-of-00012.safetensors",
531
+ "model.layers.24.mlp.switch_mlp.down_proj.weight": "model-00009-of-00012.safetensors",
532
+ "model.layers.24.mlp.switch_mlp.gate_proj.biases": "model-00009-of-00012.safetensors",
533
+ "model.layers.24.mlp.switch_mlp.gate_proj.scales": "model-00009-of-00012.safetensors",
534
+ "model.layers.24.mlp.switch_mlp.gate_proj.weight": "model-00009-of-00012.safetensors",
535
+ "model.layers.24.mlp.switch_mlp.up_proj.biases": "model-00009-of-00012.safetensors",
536
+ "model.layers.24.mlp.switch_mlp.up_proj.scales": "model-00009-of-00012.safetensors",
537
+ "model.layers.24.mlp.switch_mlp.up_proj.weight": "model-00009-of-00012.safetensors",
538
+ "model.layers.24.post_attention_layernorm.weight": "model-00009-of-00012.safetensors",
539
+ "model.layers.25.attention.dense.biases": "model-00009-of-00012.safetensors",
540
+ "model.layers.25.attention.dense.scales": "model-00009-of-00012.safetensors",
541
+ "model.layers.25.attention.dense.weight": "model-00009-of-00012.safetensors",
542
+ "model.layers.25.attention.key_layernorm.weight": "model-00009-of-00012.safetensors",
543
+ "model.layers.25.attention.query_key_value.biases": "model-00009-of-00012.safetensors",
544
+ "model.layers.25.attention.query_key_value.scales": "model-00009-of-00012.safetensors",
545
+ "model.layers.25.attention.query_key_value.weight": "model-00009-of-00012.safetensors",
546
+ "model.layers.25.attention.query_layernorm.weight": "model-00009-of-00012.safetensors",
547
+ "model.layers.25.input_layernorm.weight": "model-00010-of-00012.safetensors",
548
+ "model.layers.25.mlp.gate.expert_bias": "model-00010-of-00012.safetensors",
549
+ "model.layers.25.mlp.gate.weight": "model-00010-of-00012.safetensors",
550
+ "model.layers.25.mlp.shared_experts.down_proj.biases": "model-00010-of-00012.safetensors",
551
+ "model.layers.25.mlp.shared_experts.down_proj.scales": "model-00010-of-00012.safetensors",
552
+ "model.layers.25.mlp.shared_experts.down_proj.weight": "model-00010-of-00012.safetensors",
553
+ "model.layers.25.mlp.shared_experts.gate_proj.biases": "model-00010-of-00012.safetensors",
554
+ "model.layers.25.mlp.shared_experts.gate_proj.scales": "model-00010-of-00012.safetensors",
555
+ "model.layers.25.mlp.shared_experts.gate_proj.weight": "model-00010-of-00012.safetensors",
556
+ "model.layers.25.mlp.shared_experts.up_proj.biases": "model-00010-of-00012.safetensors",
557
+ "model.layers.25.mlp.shared_experts.up_proj.scales": "model-00010-of-00012.safetensors",
558
+ "model.layers.25.mlp.shared_experts.up_proj.weight": "model-00010-of-00012.safetensors",
559
+ "model.layers.25.mlp.switch_mlp.down_proj.biases": "model-00010-of-00012.safetensors",
560
+ "model.layers.25.mlp.switch_mlp.down_proj.scales": "model-00010-of-00012.safetensors",
561
+ "model.layers.25.mlp.switch_mlp.down_proj.weight": "model-00010-of-00012.safetensors",
562
+ "model.layers.25.mlp.switch_mlp.gate_proj.biases": "model-00010-of-00012.safetensors",
563
+ "model.layers.25.mlp.switch_mlp.gate_proj.scales": "model-00010-of-00012.safetensors",
564
+ "model.layers.25.mlp.switch_mlp.gate_proj.weight": "model-00010-of-00012.safetensors",
565
+ "model.layers.25.mlp.switch_mlp.up_proj.biases": "model-00010-of-00012.safetensors",
566
+ "model.layers.25.mlp.switch_mlp.up_proj.scales": "model-00010-of-00012.safetensors",
567
+ "model.layers.25.mlp.switch_mlp.up_proj.weight": "model-00010-of-00012.safetensors",
568
+ "model.layers.25.post_attention_layernorm.weight": "model-00010-of-00012.safetensors",
569
+ "model.layers.26.attention.dense.biases": "model-00010-of-00012.safetensors",
570
+ "model.layers.26.attention.dense.scales": "model-00010-of-00012.safetensors",
571
+ "model.layers.26.attention.dense.weight": "model-00010-of-00012.safetensors",
572
+ "model.layers.26.attention.key_layernorm.weight": "model-00010-of-00012.safetensors",
573
+ "model.layers.26.attention.query_key_value.biases": "model-00010-of-00012.safetensors",
574
+ "model.layers.26.attention.query_key_value.scales": "model-00010-of-00012.safetensors",
575
+ "model.layers.26.attention.query_key_value.weight": "model-00010-of-00012.safetensors",
576
+ "model.layers.26.attention.query_layernorm.weight": "model-00010-of-00012.safetensors",
577
+ "model.layers.26.input_layernorm.weight": "model-00010-of-00012.safetensors",
578
+ "model.layers.26.mlp.gate.expert_bias": "model-00010-of-00012.safetensors",
579
+ "model.layers.26.mlp.gate.weight": "model-00010-of-00012.safetensors",
580
+ "model.layers.26.mlp.shared_experts.down_proj.biases": "model-00010-of-00012.safetensors",
581
+ "model.layers.26.mlp.shared_experts.down_proj.scales": "model-00010-of-00012.safetensors",
582
+ "model.layers.26.mlp.shared_experts.down_proj.weight": "model-00010-of-00012.safetensors",
583
+ "model.layers.26.mlp.shared_experts.gate_proj.biases": "model-00010-of-00012.safetensors",
584
+ "model.layers.26.mlp.shared_experts.gate_proj.scales": "model-00010-of-00012.safetensors",
585
+ "model.layers.26.mlp.shared_experts.gate_proj.weight": "model-00010-of-00012.safetensors",
586
+ "model.layers.26.mlp.shared_experts.up_proj.biases": "model-00010-of-00012.safetensors",
587
+ "model.layers.26.mlp.shared_experts.up_proj.scales": "model-00010-of-00012.safetensors",
588
+ "model.layers.26.mlp.shared_experts.up_proj.weight": "model-00010-of-00012.safetensors",
589
+ "model.layers.26.mlp.switch_mlp.down_proj.biases": "model-00010-of-00012.safetensors",
590
+ "model.layers.26.mlp.switch_mlp.down_proj.scales": "model-00010-of-00012.safetensors",
591
+ "model.layers.26.mlp.switch_mlp.down_proj.weight": "model-00010-of-00012.safetensors",
592
+ "model.layers.26.mlp.switch_mlp.gate_proj.biases": "model-00010-of-00012.safetensors",
593
+ "model.layers.26.mlp.switch_mlp.gate_proj.scales": "model-00010-of-00012.safetensors",
594
+ "model.layers.26.mlp.switch_mlp.gate_proj.weight": "model-00010-of-00012.safetensors",
595
+ "model.layers.26.mlp.switch_mlp.up_proj.biases": "model-00010-of-00012.safetensors",
596
+ "model.layers.26.mlp.switch_mlp.up_proj.scales": "model-00010-of-00012.safetensors",
597
+ "model.layers.26.mlp.switch_mlp.up_proj.weight": "model-00010-of-00012.safetensors",
598
+ "model.layers.26.post_attention_layernorm.weight": "model-00010-of-00012.safetensors",
599
+ "model.layers.27.attention.dense.biases": "model-00010-of-00012.safetensors",
600
+ "model.layers.27.attention.dense.scales": "model-00010-of-00012.safetensors",
601
+ "model.layers.27.attention.dense.weight": "model-00010-of-00012.safetensors",
602
+ "model.layers.27.attention.key_layernorm.weight": "model-00010-of-00012.safetensors",
603
+ "model.layers.27.attention.query_key_value.biases": "model-00010-of-00012.safetensors",
604
+ "model.layers.27.attention.query_key_value.scales": "model-00010-of-00012.safetensors",
605
+ "model.layers.27.attention.query_key_value.weight": "model-00010-of-00012.safetensors",
606
+ "model.layers.27.attention.query_layernorm.weight": "model-00010-of-00012.safetensors",
607
+ "model.layers.27.input_layernorm.weight": "model-00011-of-00012.safetensors",
608
+ "model.layers.27.mlp.gate.expert_bias": "model-00011-of-00012.safetensors",
609
+ "model.layers.27.mlp.gate.weight": "model-00011-of-00012.safetensors",
610
+ "model.layers.27.mlp.shared_experts.down_proj.biases": "model-00011-of-00012.safetensors",
611
+ "model.layers.27.mlp.shared_experts.down_proj.scales": "model-00011-of-00012.safetensors",
612
+ "model.layers.27.mlp.shared_experts.down_proj.weight": "model-00011-of-00012.safetensors",
613
+ "model.layers.27.mlp.shared_experts.gate_proj.biases": "model-00011-of-00012.safetensors",
614
+ "model.layers.27.mlp.shared_experts.gate_proj.scales": "model-00011-of-00012.safetensors",
615
+ "model.layers.27.mlp.shared_experts.gate_proj.weight": "model-00011-of-00012.safetensors",
616
+ "model.layers.27.mlp.shared_experts.up_proj.biases": "model-00011-of-00012.safetensors",
617
+ "model.layers.27.mlp.shared_experts.up_proj.scales": "model-00011-of-00012.safetensors",
618
+ "model.layers.27.mlp.shared_experts.up_proj.weight": "model-00011-of-00012.safetensors",
619
+ "model.layers.27.mlp.switch_mlp.down_proj.biases": "model-00011-of-00012.safetensors",
620
+ "model.layers.27.mlp.switch_mlp.down_proj.scales": "model-00011-of-00012.safetensors",
621
+ "model.layers.27.mlp.switch_mlp.down_proj.weight": "model-00011-of-00012.safetensors",
622
+ "model.layers.27.mlp.switch_mlp.gate_proj.biases": "model-00010-of-00012.safetensors",
623
+ "model.layers.27.mlp.switch_mlp.gate_proj.scales": "model-00010-of-00012.safetensors",
624
+ "model.layers.27.mlp.switch_mlp.gate_proj.weight": "model-00010-of-00012.safetensors",
625
+ "model.layers.27.mlp.switch_mlp.up_proj.biases": "model-00010-of-00012.safetensors",
626
+ "model.layers.27.mlp.switch_mlp.up_proj.scales": "model-00010-of-00012.safetensors",
627
+ "model.layers.27.mlp.switch_mlp.up_proj.weight": "model-00010-of-00012.safetensors",
628
+ "model.layers.27.post_attention_layernorm.weight": "model-00011-of-00012.safetensors",
629
+ "model.layers.28.attention.dense.biases": "model-00011-of-00012.safetensors",
630
+ "model.layers.28.attention.dense.scales": "model-00011-of-00012.safetensors",
631
+ "model.layers.28.attention.dense.weight": "model-00011-of-00012.safetensors",
632
+ "model.layers.28.attention.key_layernorm.weight": "model-00011-of-00012.safetensors",
633
+ "model.layers.28.attention.query_key_value.biases": "model-00011-of-00012.safetensors",
634
+ "model.layers.28.attention.query_key_value.scales": "model-00011-of-00012.safetensors",
635
+ "model.layers.28.attention.query_key_value.weight": "model-00011-of-00012.safetensors",
636
+ "model.layers.28.attention.query_layernorm.weight": "model-00011-of-00012.safetensors",
637
+ "model.layers.28.input_layernorm.weight": "model-00011-of-00012.safetensors",
638
+ "model.layers.28.mlp.gate.expert_bias": "model-00011-of-00012.safetensors",
639
+ "model.layers.28.mlp.gate.weight": "model-00011-of-00012.safetensors",
640
+ "model.layers.28.mlp.shared_experts.down_proj.biases": "model-00011-of-00012.safetensors",
641
+ "model.layers.28.mlp.shared_experts.down_proj.scales": "model-00011-of-00012.safetensors",
642
+ "model.layers.28.mlp.shared_experts.down_proj.weight": "model-00011-of-00012.safetensors",
643
+ "model.layers.28.mlp.shared_experts.gate_proj.biases": "model-00011-of-00012.safetensors",
644
+ "model.layers.28.mlp.shared_experts.gate_proj.scales": "model-00011-of-00012.safetensors",
645
+ "model.layers.28.mlp.shared_experts.gate_proj.weight": "model-00011-of-00012.safetensors",
646
+ "model.layers.28.mlp.shared_experts.up_proj.biases": "model-00011-of-00012.safetensors",
647
+ "model.layers.28.mlp.shared_experts.up_proj.scales": "model-00011-of-00012.safetensors",
648
+ "model.layers.28.mlp.shared_experts.up_proj.weight": "model-00011-of-00012.safetensors",
649
+ "model.layers.28.mlp.switch_mlp.down_proj.biases": "model-00011-of-00012.safetensors",
650
+ "model.layers.28.mlp.switch_mlp.down_proj.scales": "model-00011-of-00012.safetensors",
651
+ "model.layers.28.mlp.switch_mlp.down_proj.weight": "model-00011-of-00012.safetensors",
652
+ "model.layers.28.mlp.switch_mlp.gate_proj.biases": "model-00011-of-00012.safetensors",
653
+ "model.layers.28.mlp.switch_mlp.gate_proj.scales": "model-00011-of-00012.safetensors",
654
+ "model.layers.28.mlp.switch_mlp.gate_proj.weight": "model-00011-of-00012.safetensors",
655
+ "model.layers.28.mlp.switch_mlp.up_proj.biases": "model-00011-of-00012.safetensors",
656
+ "model.layers.28.mlp.switch_mlp.up_proj.scales": "model-00011-of-00012.safetensors",
657
+ "model.layers.28.mlp.switch_mlp.up_proj.weight": "model-00011-of-00012.safetensors",
658
+ "model.layers.28.post_attention_layernorm.weight": "model-00011-of-00012.safetensors",
659
+ "model.layers.29.attention.dense.biases": "model-00011-of-00012.safetensors",
660
+ "model.layers.29.attention.dense.scales": "model-00011-of-00012.safetensors",
661
+ "model.layers.29.attention.dense.weight": "model-00011-of-00012.safetensors",
662
+ "model.layers.29.attention.key_layernorm.weight": "model-00011-of-00012.safetensors",
663
+ "model.layers.29.attention.query_key_value.biases": "model-00011-of-00012.safetensors",
664
+ "model.layers.29.attention.query_key_value.scales": "model-00011-of-00012.safetensors",
665
+ "model.layers.29.attention.query_key_value.weight": "model-00011-of-00012.safetensors",
666
+ "model.layers.29.attention.query_layernorm.weight": "model-00011-of-00012.safetensors",
667
+ "model.layers.29.input_layernorm.weight": "model-00011-of-00012.safetensors",
668
+ "model.layers.29.mlp.gate.expert_bias": "model-00011-of-00012.safetensors",
669
+ "model.layers.29.mlp.gate.weight": "model-00011-of-00012.safetensors",
670
+ "model.layers.29.mlp.shared_experts.down_proj.biases": "model-00011-of-00012.safetensors",
671
+ "model.layers.29.mlp.shared_experts.down_proj.scales": "model-00011-of-00012.safetensors",
672
+ "model.layers.29.mlp.shared_experts.down_proj.weight": "model-00011-of-00012.safetensors",
673
+ "model.layers.29.mlp.shared_experts.gate_proj.biases": "model-00011-of-00012.safetensors",
674
+ "model.layers.29.mlp.shared_experts.gate_proj.scales": "model-00011-of-00012.safetensors",
675
+ "model.layers.29.mlp.shared_experts.gate_proj.weight": "model-00011-of-00012.safetensors",
676
+ "model.layers.29.mlp.shared_experts.up_proj.biases": "model-00011-of-00012.safetensors",
677
+ "model.layers.29.mlp.shared_experts.up_proj.scales": "model-00011-of-00012.safetensors",
678
+ "model.layers.29.mlp.shared_experts.up_proj.weight": "model-00011-of-00012.safetensors",
679
+ "model.layers.29.mlp.switch_mlp.down_proj.biases": "model-00011-of-00012.safetensors",
680
+ "model.layers.29.mlp.switch_mlp.down_proj.scales": "model-00011-of-00012.safetensors",
681
+ "model.layers.29.mlp.switch_mlp.down_proj.weight": "model-00011-of-00012.safetensors",
682
+ "model.layers.29.mlp.switch_mlp.gate_proj.biases": "model-00011-of-00012.safetensors",
683
+ "model.layers.29.mlp.switch_mlp.gate_proj.scales": "model-00011-of-00012.safetensors",
684
+ "model.layers.29.mlp.switch_mlp.gate_proj.weight": "model-00011-of-00012.safetensors",
685
+ "model.layers.29.mlp.switch_mlp.up_proj.biases": "model-00011-of-00012.safetensors",
686
+ "model.layers.29.mlp.switch_mlp.up_proj.scales": "model-00011-of-00012.safetensors",
687
+ "model.layers.29.mlp.switch_mlp.up_proj.weight": "model-00011-of-00012.safetensors",
688
+ "model.layers.29.post_attention_layernorm.weight": "model-00011-of-00012.safetensors",
689
+ "model.layers.3.attention.dense.biases": "model-00001-of-00012.safetensors",
690
+ "model.layers.3.attention.dense.scales": "model-00001-of-00012.safetensors",
691
+ "model.layers.3.attention.dense.weight": "model-00001-of-00012.safetensors",
692
+ "model.layers.3.attention.key_layernorm.weight": "model-00001-of-00012.safetensors",
693
+ "model.layers.3.attention.query_key_value.biases": "model-00001-of-00012.safetensors",
694
+ "model.layers.3.attention.query_key_value.scales": "model-00001-of-00012.safetensors",
695
+ "model.layers.3.attention.query_key_value.weight": "model-00001-of-00012.safetensors",
696
+ "model.layers.3.attention.query_layernorm.weight": "model-00001-of-00012.safetensors",
697
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00012.safetensors",
698
+ "model.layers.3.mlp.gate.expert_bias": "model-00002-of-00012.safetensors",
699
+ "model.layers.3.mlp.gate.weight": "model-00002-of-00012.safetensors",
700
+ "model.layers.3.mlp.shared_experts.down_proj.biases": "model-00002-of-00012.safetensors",
701
+ "model.layers.3.mlp.shared_experts.down_proj.scales": "model-00002-of-00012.safetensors",
702
+ "model.layers.3.mlp.shared_experts.down_proj.weight": "model-00002-of-00012.safetensors",
703
+ "model.layers.3.mlp.shared_experts.gate_proj.biases": "model-00002-of-00012.safetensors",
704
+ "model.layers.3.mlp.shared_experts.gate_proj.scales": "model-00002-of-00012.safetensors",
705
+ "model.layers.3.mlp.shared_experts.gate_proj.weight": "model-00002-of-00012.safetensors",
706
+ "model.layers.3.mlp.shared_experts.up_proj.biases": "model-00002-of-00012.safetensors",
707
+ "model.layers.3.mlp.shared_experts.up_proj.scales": "model-00002-of-00012.safetensors",
708
+ "model.layers.3.mlp.shared_experts.up_proj.weight": "model-00002-of-00012.safetensors",
709
+ "model.layers.3.mlp.switch_mlp.down_proj.biases": "model-00002-of-00012.safetensors",
710
+ "model.layers.3.mlp.switch_mlp.down_proj.scales": "model-00002-of-00012.safetensors",
711
+ "model.layers.3.mlp.switch_mlp.down_proj.weight": "model-00002-of-00012.safetensors",
712
+ "model.layers.3.mlp.switch_mlp.gate_proj.biases": "model-00001-of-00012.safetensors",
713
+ "model.layers.3.mlp.switch_mlp.gate_proj.scales": "model-00001-of-00012.safetensors",
714
+ "model.layers.3.mlp.switch_mlp.gate_proj.weight": "model-00001-of-00012.safetensors",
715
+ "model.layers.3.mlp.switch_mlp.up_proj.biases": "model-00001-of-00012.safetensors",
716
+ "model.layers.3.mlp.switch_mlp.up_proj.scales": "model-00001-of-00012.safetensors",
717
+ "model.layers.3.mlp.switch_mlp.up_proj.weight": "model-00001-of-00012.safetensors",
718
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00012.safetensors",
719
+ "model.layers.30.attention.dense.biases": "model-00011-of-00012.safetensors",
720
+ "model.layers.30.attention.dense.scales": "model-00011-of-00012.safetensors",
721
+ "model.layers.30.attention.dense.weight": "model-00011-of-00012.safetensors",
722
+ "model.layers.30.attention.key_layernorm.weight": "model-00011-of-00012.safetensors",
723
+ "model.layers.30.attention.query_key_value.biases": "model-00011-of-00012.safetensors",
724
+ "model.layers.30.attention.query_key_value.scales": "model-00011-of-00012.safetensors",
725
+ "model.layers.30.attention.query_key_value.weight": "model-00011-of-00012.safetensors",
726
+ "model.layers.30.attention.query_layernorm.weight": "model-00011-of-00012.safetensors",
727
+ "model.layers.30.input_layernorm.weight": "model-00012-of-00012.safetensors",
728
+ "model.layers.30.mlp.gate.expert_bias": "model-00012-of-00012.safetensors",
729
+ "model.layers.30.mlp.gate.weight": "model-00012-of-00012.safetensors",
730
+ "model.layers.30.mlp.shared_experts.down_proj.biases": "model-00012-of-00012.safetensors",
731
+ "model.layers.30.mlp.shared_experts.down_proj.scales": "model-00012-of-00012.safetensors",
732
+ "model.layers.30.mlp.shared_experts.down_proj.weight": "model-00012-of-00012.safetensors",
733
+ "model.layers.30.mlp.shared_experts.gate_proj.biases": "model-00012-of-00012.safetensors",
734
+ "model.layers.30.mlp.shared_experts.gate_proj.scales": "model-00012-of-00012.safetensors",
735
+ "model.layers.30.mlp.shared_experts.gate_proj.weight": "model-00012-of-00012.safetensors",
736
+ "model.layers.30.mlp.shared_experts.up_proj.biases": "model-00012-of-00012.safetensors",
737
+ "model.layers.30.mlp.shared_experts.up_proj.scales": "model-00012-of-00012.safetensors",
738
+ "model.layers.30.mlp.shared_experts.up_proj.weight": "model-00012-of-00012.safetensors",
739
+ "model.layers.30.mlp.switch_mlp.down_proj.biases": "model-00012-of-00012.safetensors",
740
+ "model.layers.30.mlp.switch_mlp.down_proj.scales": "model-00012-of-00012.safetensors",
741
+ "model.layers.30.mlp.switch_mlp.down_proj.weight": "model-00012-of-00012.safetensors",
742
+ "model.layers.30.mlp.switch_mlp.gate_proj.biases": "model-00011-of-00012.safetensors",
743
+ "model.layers.30.mlp.switch_mlp.gate_proj.scales": "model-00011-of-00012.safetensors",
744
+ "model.layers.30.mlp.switch_mlp.gate_proj.weight": "model-00011-of-00012.safetensors",
745
+ "model.layers.30.mlp.switch_mlp.up_proj.biases": "model-00012-of-00012.safetensors",
746
+ "model.layers.30.mlp.switch_mlp.up_proj.scales": "model-00012-of-00012.safetensors",
747
+ "model.layers.30.mlp.switch_mlp.up_proj.weight": "model-00012-of-00012.safetensors",
748
+ "model.layers.30.post_attention_layernorm.weight": "model-00012-of-00012.safetensors",
749
+ "model.layers.31.attention.dense.biases": "model-00012-of-00012.safetensors",
750
+ "model.layers.31.attention.dense.scales": "model-00012-of-00012.safetensors",
751
+ "model.layers.31.attention.dense.weight": "model-00012-of-00012.safetensors",
752
+ "model.layers.31.attention.key_layernorm.weight": "model-00012-of-00012.safetensors",
753
+ "model.layers.31.attention.query_key_value.biases": "model-00012-of-00012.safetensors",
754
+ "model.layers.31.attention.query_key_value.scales": "model-00012-of-00012.safetensors",
755
+ "model.layers.31.attention.query_key_value.weight": "model-00012-of-00012.safetensors",
756
+ "model.layers.31.attention.query_layernorm.weight": "model-00012-of-00012.safetensors",
757
+ "model.layers.31.input_layernorm.weight": "model-00012-of-00012.safetensors",
758
+ "model.layers.31.mlp.gate.expert_bias": "model-00012-of-00012.safetensors",
759
+ "model.layers.31.mlp.gate.weight": "model-00012-of-00012.safetensors",
760
+ "model.layers.31.mlp.shared_experts.down_proj.biases": "model-00012-of-00012.safetensors",
761
+ "model.layers.31.mlp.shared_experts.down_proj.scales": "model-00012-of-00012.safetensors",
762
+ "model.layers.31.mlp.shared_experts.down_proj.weight": "model-00012-of-00012.safetensors",
763
+ "model.layers.31.mlp.shared_experts.gate_proj.biases": "model-00012-of-00012.safetensors",
764
+ "model.layers.31.mlp.shared_experts.gate_proj.scales": "model-00012-of-00012.safetensors",
765
+ "model.layers.31.mlp.shared_experts.gate_proj.weight": "model-00012-of-00012.safetensors",
766
+ "model.layers.31.mlp.shared_experts.up_proj.biases": "model-00012-of-00012.safetensors",
767
+ "model.layers.31.mlp.shared_experts.up_proj.scales": "model-00012-of-00012.safetensors",
768
+ "model.layers.31.mlp.shared_experts.up_proj.weight": "model-00012-of-00012.safetensors",
769
+ "model.layers.31.mlp.switch_mlp.down_proj.biases": "model-00012-of-00012.safetensors",
770
+ "model.layers.31.mlp.switch_mlp.down_proj.scales": "model-00012-of-00012.safetensors",
771
+ "model.layers.31.mlp.switch_mlp.down_proj.weight": "model-00012-of-00012.safetensors",
772
+ "model.layers.31.mlp.switch_mlp.gate_proj.biases": "model-00012-of-00012.safetensors",
773
+ "model.layers.31.mlp.switch_mlp.gate_proj.scales": "model-00012-of-00012.safetensors",
774
+ "model.layers.31.mlp.switch_mlp.gate_proj.weight": "model-00012-of-00012.safetensors",
775
+ "model.layers.31.mlp.switch_mlp.up_proj.biases": "model-00012-of-00012.safetensors",
776
+ "model.layers.31.mlp.switch_mlp.up_proj.scales": "model-00012-of-00012.safetensors",
777
+ "model.layers.31.mlp.switch_mlp.up_proj.weight": "model-00012-of-00012.safetensors",
778
+ "model.layers.31.post_attention_layernorm.weight": "model-00012-of-00012.safetensors",
779
+ "model.layers.4.attention.dense.biases": "model-00002-of-00012.safetensors",
780
+ "model.layers.4.attention.dense.scales": "model-00002-of-00012.safetensors",
781
+ "model.layers.4.attention.dense.weight": "model-00002-of-00012.safetensors",
782
+ "model.layers.4.attention.key_layernorm.weight": "model-00002-of-00012.safetensors",
783
+ "model.layers.4.attention.query_key_value.biases": "model-00002-of-00012.safetensors",
784
+ "model.layers.4.attention.query_key_value.scales": "model-00002-of-00012.safetensors",
785
+ "model.layers.4.attention.query_key_value.weight": "model-00002-of-00012.safetensors",
786
+ "model.layers.4.attention.query_layernorm.weight": "model-00002-of-00012.safetensors",
787
+ "model.layers.4.input_layernorm.weight": "model-00002-of-00012.safetensors",
788
+ "model.layers.4.mlp.gate.expert_bias": "model-00002-of-00012.safetensors",
789
+ "model.layers.4.mlp.gate.weight": "model-00002-of-00012.safetensors",
790
+ "model.layers.4.mlp.shared_experts.down_proj.biases": "model-00002-of-00012.safetensors",
791
+ "model.layers.4.mlp.shared_experts.down_proj.scales": "model-00002-of-00012.safetensors",
792
+ "model.layers.4.mlp.shared_experts.down_proj.weight": "model-00002-of-00012.safetensors",
793
+ "model.layers.4.mlp.shared_experts.gate_proj.biases": "model-00002-of-00012.safetensors",
794
+ "model.layers.4.mlp.shared_experts.gate_proj.scales": "model-00002-of-00012.safetensors",
795
+ "model.layers.4.mlp.shared_experts.gate_proj.weight": "model-00002-of-00012.safetensors",
796
+ "model.layers.4.mlp.shared_experts.up_proj.biases": "model-00002-of-00012.safetensors",
797
+ "model.layers.4.mlp.shared_experts.up_proj.scales": "model-00002-of-00012.safetensors",
798
+ "model.layers.4.mlp.shared_experts.up_proj.weight": "model-00002-of-00012.safetensors",
799
+ "model.layers.4.mlp.switch_mlp.down_proj.biases": "model-00002-of-00012.safetensors",
800
+ "model.layers.4.mlp.switch_mlp.down_proj.scales": "model-00002-of-00012.safetensors",
801
+ "model.layers.4.mlp.switch_mlp.down_proj.weight": "model-00002-of-00012.safetensors",
802
+ "model.layers.4.mlp.switch_mlp.gate_proj.biases": "model-00002-of-00012.safetensors",
803
+ "model.layers.4.mlp.switch_mlp.gate_proj.scales": "model-00002-of-00012.safetensors",
804
+ "model.layers.4.mlp.switch_mlp.gate_proj.weight": "model-00002-of-00012.safetensors",
805
+ "model.layers.4.mlp.switch_mlp.up_proj.biases": "model-00002-of-00012.safetensors",
806
+ "model.layers.4.mlp.switch_mlp.up_proj.scales": "model-00002-of-00012.safetensors",
807
+ "model.layers.4.mlp.switch_mlp.up_proj.weight": "model-00002-of-00012.safetensors",
808
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00012.safetensors",
809
+ "model.layers.5.attention.dense.biases": "model-00002-of-00012.safetensors",
810
+ "model.layers.5.attention.dense.scales": "model-00002-of-00012.safetensors",
811
+ "model.layers.5.attention.dense.weight": "model-00002-of-00012.safetensors",
812
+ "model.layers.5.attention.key_layernorm.weight": "model-00002-of-00012.safetensors",
813
+ "model.layers.5.attention.query_key_value.biases": "model-00002-of-00012.safetensors",
814
+ "model.layers.5.attention.query_key_value.scales": "model-00002-of-00012.safetensors",
815
+ "model.layers.5.attention.query_key_value.weight": "model-00002-of-00012.safetensors",
816
+ "model.layers.5.attention.query_layernorm.weight": "model-00002-of-00012.safetensors",
817
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00012.safetensors",
818
+ "model.layers.5.mlp.gate.expert_bias": "model-00002-of-00012.safetensors",
819
+ "model.layers.5.mlp.gate.weight": "model-00002-of-00012.safetensors",
820
+ "model.layers.5.mlp.shared_experts.down_proj.biases": "model-00002-of-00012.safetensors",
821
+ "model.layers.5.mlp.shared_experts.down_proj.scales": "model-00002-of-00012.safetensors",
822
+ "model.layers.5.mlp.shared_experts.down_proj.weight": "model-00002-of-00012.safetensors",
823
+ "model.layers.5.mlp.shared_experts.gate_proj.biases": "model-00002-of-00012.safetensors",
824
+ "model.layers.5.mlp.shared_experts.gate_proj.scales": "model-00002-of-00012.safetensors",
825
+ "model.layers.5.mlp.shared_experts.gate_proj.weight": "model-00002-of-00012.safetensors",
826
+ "model.layers.5.mlp.shared_experts.up_proj.biases": "model-00002-of-00012.safetensors",
827
+ "model.layers.5.mlp.shared_experts.up_proj.scales": "model-00002-of-00012.safetensors",
828
+ "model.layers.5.mlp.shared_experts.up_proj.weight": "model-00002-of-00012.safetensors",
829
+ "model.layers.5.mlp.switch_mlp.down_proj.biases": "model-00002-of-00012.safetensors",
830
+ "model.layers.5.mlp.switch_mlp.down_proj.scales": "model-00002-of-00012.safetensors",
831
+ "model.layers.5.mlp.switch_mlp.down_proj.weight": "model-00002-of-00012.safetensors",
832
+ "model.layers.5.mlp.switch_mlp.gate_proj.biases": "model-00002-of-00012.safetensors",
833
+ "model.layers.5.mlp.switch_mlp.gate_proj.scales": "model-00002-of-00012.safetensors",
834
+ "model.layers.5.mlp.switch_mlp.gate_proj.weight": "model-00002-of-00012.safetensors",
835
+ "model.layers.5.mlp.switch_mlp.up_proj.biases": "model-00002-of-00012.safetensors",
836
+ "model.layers.5.mlp.switch_mlp.up_proj.scales": "model-00002-of-00012.safetensors",
837
+ "model.layers.5.mlp.switch_mlp.up_proj.weight": "model-00002-of-00012.safetensors",
838
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00012.safetensors",
839
+ "model.layers.6.attention.dense.biases": "model-00002-of-00012.safetensors",
840
+ "model.layers.6.attention.dense.scales": "model-00002-of-00012.safetensors",
841
+ "model.layers.6.attention.dense.weight": "model-00002-of-00012.safetensors",
842
+ "model.layers.6.attention.key_layernorm.weight": "model-00002-of-00012.safetensors",
843
+ "model.layers.6.attention.query_key_value.biases": "model-00002-of-00012.safetensors",
844
+ "model.layers.6.attention.query_key_value.scales": "model-00002-of-00012.safetensors",
845
+ "model.layers.6.attention.query_key_value.weight": "model-00002-of-00012.safetensors",
846
+ "model.layers.6.attention.query_layernorm.weight": "model-00002-of-00012.safetensors",
847
+ "model.layers.6.input_layernorm.weight": "model-00003-of-00012.safetensors",
848
+ "model.layers.6.mlp.gate.expert_bias": "model-00003-of-00012.safetensors",
849
+ "model.layers.6.mlp.gate.weight": "model-00003-of-00012.safetensors",
850
+ "model.layers.6.mlp.shared_experts.down_proj.biases": "model-00003-of-00012.safetensors",
851
+ "model.layers.6.mlp.shared_experts.down_proj.scales": "model-00003-of-00012.safetensors",
852
+ "model.layers.6.mlp.shared_experts.down_proj.weight": "model-00003-of-00012.safetensors",
853
+ "model.layers.6.mlp.shared_experts.gate_proj.biases": "model-00003-of-00012.safetensors",
854
+ "model.layers.6.mlp.shared_experts.gate_proj.scales": "model-00003-of-00012.safetensors",
855
+ "model.layers.6.mlp.shared_experts.gate_proj.weight": "model-00003-of-00012.safetensors",
856
+ "model.layers.6.mlp.shared_experts.up_proj.biases": "model-00003-of-00012.safetensors",
857
+ "model.layers.6.mlp.shared_experts.up_proj.scales": "model-00003-of-00012.safetensors",
858
+ "model.layers.6.mlp.shared_experts.up_proj.weight": "model-00003-of-00012.safetensors",
859
+ "model.layers.6.mlp.switch_mlp.down_proj.biases": "model-00003-of-00012.safetensors",
860
+ "model.layers.6.mlp.switch_mlp.down_proj.scales": "model-00003-of-00012.safetensors",
861
+ "model.layers.6.mlp.switch_mlp.down_proj.weight": "model-00003-of-00012.safetensors",
862
+ "model.layers.6.mlp.switch_mlp.gate_proj.biases": "model-00002-of-00012.safetensors",
863
+ "model.layers.6.mlp.switch_mlp.gate_proj.scales": "model-00002-of-00012.safetensors",
864
+ "model.layers.6.mlp.switch_mlp.gate_proj.weight": "model-00002-of-00012.safetensors",
865
+ "model.layers.6.mlp.switch_mlp.up_proj.biases": "model-00003-of-00012.safetensors",
866
+ "model.layers.6.mlp.switch_mlp.up_proj.scales": "model-00003-of-00012.safetensors",
867
+ "model.layers.6.mlp.switch_mlp.up_proj.weight": "model-00003-of-00012.safetensors",
868
+ "model.layers.6.post_attention_layernorm.weight": "model-00003-of-00012.safetensors",
869
+ "model.layers.7.attention.dense.biases": "model-00003-of-00012.safetensors",
870
+ "model.layers.7.attention.dense.scales": "model-00003-of-00012.safetensors",
871
+ "model.layers.7.attention.dense.weight": "model-00003-of-00012.safetensors",
872
+ "model.layers.7.attention.key_layernorm.weight": "model-00003-of-00012.safetensors",
873
+ "model.layers.7.attention.query_key_value.biases": "model-00003-of-00012.safetensors",
874
+ "model.layers.7.attention.query_key_value.scales": "model-00003-of-00012.safetensors",
875
+ "model.layers.7.attention.query_key_value.weight": "model-00003-of-00012.safetensors",
876
+ "model.layers.7.attention.query_layernorm.weight": "model-00003-of-00012.safetensors",
877
+ "model.layers.7.input_layernorm.weight": "model-00003-of-00012.safetensors",
878
+ "model.layers.7.mlp.gate.expert_bias": "model-00003-of-00012.safetensors",
879
+ "model.layers.7.mlp.gate.weight": "model-00003-of-00012.safetensors",
880
+ "model.layers.7.mlp.shared_experts.down_proj.biases": "model-00003-of-00012.safetensors",
881
+ "model.layers.7.mlp.shared_experts.down_proj.scales": "model-00003-of-00012.safetensors",
882
+ "model.layers.7.mlp.shared_experts.down_proj.weight": "model-00003-of-00012.safetensors",
883
+ "model.layers.7.mlp.shared_experts.gate_proj.biases": "model-00003-of-00012.safetensors",
884
+ "model.layers.7.mlp.shared_experts.gate_proj.scales": "model-00003-of-00012.safetensors",
885
+ "model.layers.7.mlp.shared_experts.gate_proj.weight": "model-00003-of-00012.safetensors",
886
+ "model.layers.7.mlp.shared_experts.up_proj.biases": "model-00003-of-00012.safetensors",
887
+ "model.layers.7.mlp.shared_experts.up_proj.scales": "model-00003-of-00012.safetensors",
888
+ "model.layers.7.mlp.shared_experts.up_proj.weight": "model-00003-of-00012.safetensors",
889
+ "model.layers.7.mlp.switch_mlp.down_proj.biases": "model-00003-of-00012.safetensors",
890
+ "model.layers.7.mlp.switch_mlp.down_proj.scales": "model-00003-of-00012.safetensors",
891
+ "model.layers.7.mlp.switch_mlp.down_proj.weight": "model-00003-of-00012.safetensors",
892
+ "model.layers.7.mlp.switch_mlp.gate_proj.biases": "model-00003-of-00012.safetensors",
893
+ "model.layers.7.mlp.switch_mlp.gate_proj.scales": "model-00003-of-00012.safetensors",
894
+ "model.layers.7.mlp.switch_mlp.gate_proj.weight": "model-00003-of-00012.safetensors",
895
+ "model.layers.7.mlp.switch_mlp.up_proj.biases": "model-00003-of-00012.safetensors",
896
+ "model.layers.7.mlp.switch_mlp.up_proj.scales": "model-00003-of-00012.safetensors",
897
+ "model.layers.7.mlp.switch_mlp.up_proj.weight": "model-00003-of-00012.safetensors",
898
+ "model.layers.7.post_attention_layernorm.weight": "model-00003-of-00012.safetensors",
899
+ "model.layers.8.attention.dense.biases": "model-00003-of-00012.safetensors",
900
+ "model.layers.8.attention.dense.scales": "model-00003-of-00012.safetensors",
901
+ "model.layers.8.attention.dense.weight": "model-00003-of-00012.safetensors",
902
+ "model.layers.8.attention.key_layernorm.weight": "model-00003-of-00012.safetensors",
903
+ "model.layers.8.attention.query_key_value.biases": "model-00003-of-00012.safetensors",
904
+ "model.layers.8.attention.query_key_value.scales": "model-00003-of-00012.safetensors",
905
+ "model.layers.8.attention.query_key_value.weight": "model-00003-of-00012.safetensors",
906
+ "model.layers.8.attention.query_layernorm.weight": "model-00003-of-00012.safetensors",
907
+ "model.layers.8.input_layernorm.weight": "model-00003-of-00012.safetensors",
908
+ "model.layers.8.mlp.gate.expert_bias": "model-00003-of-00012.safetensors",
909
+ "model.layers.8.mlp.gate.weight": "model-00003-of-00012.safetensors",
910
+ "model.layers.8.mlp.shared_experts.down_proj.biases": "model-00003-of-00012.safetensors",
911
+ "model.layers.8.mlp.shared_experts.down_proj.scales": "model-00003-of-00012.safetensors",
912
+ "model.layers.8.mlp.shared_experts.down_proj.weight": "model-00003-of-00012.safetensors",
913
+ "model.layers.8.mlp.shared_experts.gate_proj.biases": "model-00003-of-00012.safetensors",
914
+ "model.layers.8.mlp.shared_experts.gate_proj.scales": "model-00003-of-00012.safetensors",
915
+ "model.layers.8.mlp.shared_experts.gate_proj.weight": "model-00003-of-00012.safetensors",
916
+ "model.layers.8.mlp.shared_experts.up_proj.biases": "model-00003-of-00012.safetensors",
917
+ "model.layers.8.mlp.shared_experts.up_proj.scales": "model-00003-of-00012.safetensors",
918
+ "model.layers.8.mlp.shared_experts.up_proj.weight": "model-00003-of-00012.safetensors",
919
+ "model.layers.8.mlp.switch_mlp.down_proj.biases": "model-00003-of-00012.safetensors",
920
+ "model.layers.8.mlp.switch_mlp.down_proj.scales": "model-00003-of-00012.safetensors",
921
+ "model.layers.8.mlp.switch_mlp.down_proj.weight": "model-00003-of-00012.safetensors",
922
+ "model.layers.8.mlp.switch_mlp.gate_proj.biases": "model-00003-of-00012.safetensors",
923
+ "model.layers.8.mlp.switch_mlp.gate_proj.scales": "model-00003-of-00012.safetensors",
924
+ "model.layers.8.mlp.switch_mlp.gate_proj.weight": "model-00003-of-00012.safetensors",
925
+ "model.layers.8.mlp.switch_mlp.up_proj.biases": "model-00003-of-00012.safetensors",
926
+ "model.layers.8.mlp.switch_mlp.up_proj.scales": "model-00003-of-00012.safetensors",
927
+ "model.layers.8.mlp.switch_mlp.up_proj.weight": "model-00003-of-00012.safetensors",
928
+ "model.layers.8.post_attention_layernorm.weight": "model-00003-of-00012.safetensors",
929
+ "model.layers.9.attention.dense.biases": "model-00003-of-00012.safetensors",
930
+ "model.layers.9.attention.dense.scales": "model-00003-of-00012.safetensors",
931
+ "model.layers.9.attention.dense.weight": "model-00003-of-00012.safetensors",
932
+ "model.layers.9.attention.key_layernorm.weight": "model-00003-of-00012.safetensors",
933
+ "model.layers.9.attention.query_key_value.biases": "model-00003-of-00012.safetensors",
934
+ "model.layers.9.attention.query_key_value.scales": "model-00003-of-00012.safetensors",
935
+ "model.layers.9.attention.query_key_value.weight": "model-00003-of-00012.safetensors",
936
+ "model.layers.9.attention.query_layernorm.weight": "model-00003-of-00012.safetensors",
937
+ "model.layers.9.input_layernorm.weight": "model-00004-of-00012.safetensors",
938
+ "model.layers.9.mlp.gate.expert_bias": "model-00004-of-00012.safetensors",
939
+ "model.layers.9.mlp.gate.weight": "model-00004-of-00012.safetensors",
940
+ "model.layers.9.mlp.shared_experts.down_proj.biases": "model-00004-of-00012.safetensors",
941
+ "model.layers.9.mlp.shared_experts.down_proj.scales": "model-00004-of-00012.safetensors",
942
+ "model.layers.9.mlp.shared_experts.down_proj.weight": "model-00004-of-00012.safetensors",
943
+ "model.layers.9.mlp.shared_experts.gate_proj.biases": "model-00004-of-00012.safetensors",
944
+ "model.layers.9.mlp.shared_experts.gate_proj.scales": "model-00004-of-00012.safetensors",
945
+ "model.layers.9.mlp.shared_experts.gate_proj.weight": "model-00004-of-00012.safetensors",
946
+ "model.layers.9.mlp.shared_experts.up_proj.biases": "model-00004-of-00012.safetensors",
947
+ "model.layers.9.mlp.shared_experts.up_proj.scales": "model-00004-of-00012.safetensors",
948
+ "model.layers.9.mlp.shared_experts.up_proj.weight": "model-00004-of-00012.safetensors",
949
+ "model.layers.9.mlp.switch_mlp.down_proj.biases": "model-00004-of-00012.safetensors",
950
+ "model.layers.9.mlp.switch_mlp.down_proj.scales": "model-00004-of-00012.safetensors",
951
+ "model.layers.9.mlp.switch_mlp.down_proj.weight": "model-00004-of-00012.safetensors",
952
+ "model.layers.9.mlp.switch_mlp.gate_proj.biases": "model-00004-of-00012.safetensors",
953
+ "model.layers.9.mlp.switch_mlp.gate_proj.scales": "model-00004-of-00012.safetensors",
954
+ "model.layers.9.mlp.switch_mlp.gate_proj.weight": "model-00004-of-00012.safetensors",
955
+ "model.layers.9.mlp.switch_mlp.up_proj.biases": "model-00004-of-00012.safetensors",
956
+ "model.layers.9.mlp.switch_mlp.up_proj.scales": "model-00004-of-00012.safetensors",
957
+ "model.layers.9.mlp.switch_mlp.up_proj.weight": "model-00004-of-00012.safetensors",
958
+ "model.layers.9.post_attention_layernorm.weight": "model-00004-of-00012.safetensors",
959
+ "model.norm.weight": "model-00012-of-00012.safetensors",
960
+ "model.word_embeddings.biases": "model-00001-of-00012.safetensors",
961
+ "model.word_embeddings.scales": "model-00001-of-00012.safetensors",
962
+ "model.word_embeddings.weight": "model-00001-of-00012.safetensors"
963
+ }
964
+ }
modeling_llada2_moe.py ADDED
@@ -0,0 +1,1621 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 Antgroup and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """PyTorch LLaDA2MoE model."""
21
+
22
+ import math
23
+ import warnings
24
+ from typing import List, Optional, Tuple, Union
25
+
26
+ import torch
27
+ import torch.nn.functional as F
28
+ import torch.utils.checkpoint
29
+ from torch import nn
30
+ from torch.nn import CrossEntropyLoss
31
+
32
+ from transformers.activations import ACT2FN
33
+ from transformers.cache_utils import Cache, DynamicCache
34
+ from transformers.modeling_attn_mask_utils import (
35
+ AttentionMaskConverter,
36
+ _prepare_4d_attention_mask,
37
+ _prepare_4d_causal_attention_mask,
38
+ _prepare_4d_causal_attention_mask_for_sdpa,
39
+ )
40
+ from transformers.modeling_outputs import (
41
+ MoeModelOutputWithPast,
42
+ MoeCausalLMOutputWithPast,
43
+ )
44
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
45
+ from transformers.modeling_utils import PreTrainedModel
46
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13
47
+ from transformers.utils import (
48
+ add_start_docstrings,
49
+ add_start_docstrings_to_model_forward,
50
+ is_flash_attn_2_available,
51
+ is_flash_attn_greater_or_equal_2_10,
52
+ logging,
53
+ replace_return_docstrings,
54
+ )
55
+ from transformers.utils.import_utils import is_torch_fx_available
56
+ from .configuration_llada2_moe import LLaDA2MoeConfig
57
+ from transformers.generation.utils import GenerationMixin
58
+
59
+
60
+ if is_flash_attn_2_available():
61
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
62
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
63
+
64
+
65
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
66
+ # It means that the function will not be traced through and simply appear as a node in the graph.
67
+ if is_torch_fx_available():
68
+ if not is_torch_greater_or_equal_than_1_13:
69
+ import torch.fx
70
+
71
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
72
+
73
+
74
+ logger = logging.get_logger(__name__)
75
+
76
+ _CONFIG_FOR_DOC = "LLaDA2MoeConfig"
77
+
78
+
79
+ def _get_unpad_data(attention_mask):
80
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
81
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
82
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
83
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
84
+ return (
85
+ indices,
86
+ cu_seqlens,
87
+ max_seqlen_in_batch,
88
+ )
89
+
90
+
91
+ class LLaDA2MoeRMSNorm(nn.Module):
92
+ def __init__(self, hidden_size, eps=1e-6):
93
+ """
94
+ LLaDA2MoeRMSNorm is equivalent to T5LayerNorm
95
+ """
96
+ super().__init__()
97
+ self.weight = nn.Parameter(torch.ones(hidden_size))
98
+ self.variance_epsilon = eps
99
+
100
+ def forward(self, hidden_states):
101
+ input_dtype = hidden_states.dtype
102
+ hidden_states = hidden_states.to(torch.float32)
103
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
104
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
105
+ return self.weight * hidden_states.to(input_dtype)
106
+
107
+
108
+ ALL_LAYERNORM_LAYERS.append(LLaDA2MoeRMSNorm)
109
+
110
+
111
+ class LLaDA2MoeRotaryEmbedding(nn.Module):
112
+ def __init__(self, config: LLaDA2MoeConfig, device=None):
113
+ super().__init__()
114
+ # BC: "rope_type" was originally "type"
115
+ if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
116
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
117
+ else:
118
+ self.rope_type = "default"
119
+ self.max_seq_len_cached = config.max_position_embeddings
120
+ self.original_max_seq_len = config.max_position_embeddings
121
+
122
+ self.config = config
123
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
124
+
125
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
126
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
127
+ self.original_inv_freq = self.inv_freq
128
+
129
+ @torch.no_grad()
130
+ @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
131
+ def forward(self, x, position_ids):
132
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
133
+ position_ids_expanded = position_ids[:, None, :].float()
134
+
135
+ device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
136
+ with torch.autocast(device_type=device_type, enabled=False): # Force float32
137
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
138
+ emb = torch.cat((freqs, freqs), dim=-1)
139
+ cos = emb.cos() * self.attention_scaling
140
+ sin = emb.sin() * self.attention_scaling
141
+
142
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
143
+
144
+
145
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
146
+ def rotate_half(x):
147
+ """Rotates half the hidden dims of the input."""
148
+ x1 = x[..., : x.shape[-1] // 2]
149
+ x2 = x[..., x.shape[-1] // 2 :]
150
+ return torch.cat((-x2, x1), dim=-1)
151
+
152
+
153
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
154
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
155
+ """Applies Rotary Position Embedding to the query and key tensors.
156
+
157
+ Args:
158
+ q (`torch.Tensor`): The query tensor.
159
+ k (`torch.Tensor`): The key tensor.
160
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
161
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
162
+ position_ids (`torch.Tensor`):
163
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
164
+ used to pass offsetted position ids when working with a KV-cache.
165
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
166
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
167
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
168
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
169
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
170
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
171
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
172
+ Returns:
173
+ `tuple(torch.Tensor)` comprising the query and key tensors rotated using the Rotary Position Embedding.
174
+ """
175
+ cos = cos.unsqueeze(unsqueeze_dim)
176
+ sin = sin.unsqueeze(unsqueeze_dim)
177
+
178
+ # Keep half or full tensor for later concatenation
179
+ rotary_dim = cos.shape[-1]
180
+ q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
181
+ k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
182
+
183
+ # Apply rotary embeddings on the first half or full tensor
184
+ q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin)
185
+ k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin)
186
+
187
+ # Concatenate back to full shape
188
+ q_embed = torch.cat([q_embed, q_pass], dim=-1)
189
+ k_embed = torch.cat([k_embed, k_pass], dim=-1)
190
+ return q_embed, k_embed
191
+
192
+
193
+ class LLaDA2MoeMLP(nn.Module):
194
+ def __init__(self, config: LLaDA2MoeConfig, intermediate_size: int):
195
+ super().__init__()
196
+ self.config = config
197
+ self.hidden_size = config.hidden_size
198
+ self.intermediate_size = intermediate_size
199
+
200
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
201
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
202
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
203
+ self.act_fn = ACT2FN[config.hidden_act]
204
+
205
+ def forward(self, x):
206
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
207
+
208
+
209
+ class LLaDA2MoeGate(nn.Module):
210
+ def __init__(self, config):
211
+ super().__init__()
212
+ self.config = config
213
+ self.top_k = config.num_experts_per_tok
214
+ self.num_experts = config.num_experts
215
+
216
+ self.n_group = config.n_group
217
+ self.topk_group = config.topk_group
218
+
219
+ # topk selection algorithm
220
+ self.gating_dim = config.hidden_size
221
+ self.weight = nn.Parameter(torch.empty((self.num_experts, self.gating_dim)))
222
+ self.routed_scaling_factor = config.routed_scaling_factor
223
+
224
+ self.register_buffer("expert_bias", torch.zeros((self.num_experts)))
225
+ self.reset_parameters()
226
+
227
+ def reset_parameters(self) -> None:
228
+ import torch.nn.init as init
229
+
230
+ init.kaiming_uniform_(self.weight, a=math.sqrt(5))
231
+
232
+ def group_limited_topk(
233
+ self,
234
+ scores: torch.Tensor,
235
+ ):
236
+ num_tokens, _ = scores.size()
237
+ # Organize the experts into groups
238
+ group_scores = scores.view(num_tokens, self.n_group, -1).topk(2, dim=-1)[0].sum(dim=-1)
239
+ group_idx = torch.topk(group_scores, k=self.topk_group, dim=-1, sorted=False)[1]
240
+ group_mask = torch.zeros_like(group_scores)
241
+ group_mask.scatter_(1, group_idx, 1)
242
+
243
+ # Mask the experts based on selection groups
244
+ score_mask = (
245
+ group_mask.unsqueeze(-1)
246
+ .expand(num_tokens, self.n_group, self.num_experts // self.n_group)
247
+ .reshape(num_tokens, -1)
248
+ )
249
+
250
+ masked_scores = scores.masked_fill(~score_mask.bool(), float('-inf'))
251
+ probs, top_indices = torch.topk(masked_scores, k=self.top_k, dim=-1)
252
+
253
+ return probs, top_indices
254
+
255
+ def forward(self, hidden_states):
256
+ # compute gating score
257
+ hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
258
+ logits = F.linear(hidden_states.type(torch.float32), self.weight.type(torch.float32))
259
+
260
+ scores = torch.sigmoid(logits.float()).type_as(logits)
261
+
262
+ scores_for_routing = scores + self.expert_bias
263
+ _, topk_idx = self.group_limited_topk(scores_for_routing)
264
+
265
+ scores = torch.gather(scores, dim=1, index=topk_idx).type_as(logits)
266
+
267
+ topk_weight = scores / (scores.sum(dim=-1, keepdim=True) + 1e-20) if self.top_k > 1 else scores
268
+ topk_weight = topk_weight * self.routed_scaling_factor
269
+
270
+ return topk_idx, topk_weight, logits
271
+
272
+
273
+ class LLaDA2MoeSparseMoeBlock(nn.Module):
274
+ """
275
+ A mixed expert module containing shared experts.
276
+ """
277
+
278
+ def __init__(self, config: LLaDA2MoeConfig):
279
+ super().__init__()
280
+ self.config = config
281
+ self.num_experts_per_tok = config.num_experts_per_tok
282
+ self._setup_experts()
283
+ self.gate = LLaDA2MoeGate(config)
284
+ if config.num_shared_experts is not None:
285
+ self.shared_experts = LLaDA2MoeMLP(
286
+ config=config, intermediate_size=config.moe_intermediate_size * config.num_shared_experts
287
+ )
288
+
289
+ def _setup_experts(self):
290
+ self.experts = nn.ModuleList(
291
+ [
292
+ LLaDA2MoeMLP(config=self.config, intermediate_size=self.config.moe_intermediate_size)
293
+ for _ in range(self.config.num_experts)
294
+ ]
295
+ )
296
+
297
+ def forward(self, hidden_states):
298
+ identity = hidden_states
299
+ bsz, seq_len, h = hidden_states.shape
300
+ topk_idx, topk_weight, router_logits = self.gate(hidden_states)
301
+ hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
302
+ flat_topk_idx = topk_idx.view(-1)
303
+ if self.training:
304
+ hidden_states = hidden_states.repeat_interleave(self.num_experts_per_tok, dim=0)
305
+ y = torch.empty_like(hidden_states)
306
+ for i, expert in enumerate(self.experts):
307
+ y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
308
+ y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
309
+ y = y.to(hidden_states.dtype).view(bsz, seq_len, h)
310
+ else:
311
+ y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(bsz, seq_len, h)
312
+ if self.config.num_shared_experts is not None:
313
+ y = y + self.shared_experts(identity)
314
+ return y, (router_logits.view(bsz, seq_len, -1), topk_idx.view(bsz, seq_len, -1))
315
+
316
+ @torch.no_grad()
317
+ def moe_infer(self, x, topk_ids, topk_weight):
318
+ cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
319
+ cnts.scatter_(1, topk_ids, 1)
320
+ tokens_per_expert = cnts.sum(dim=0)
321
+ idxs = topk_ids.view(-1).argsort()
322
+ sorted_tokens = x[idxs // topk_ids.shape[1]]
323
+ sorted_tokens_shape = sorted_tokens.shape
324
+ tokens_per_expert = tokens_per_expert.cpu().numpy()
325
+ outputs = []
326
+ start_idx = 0
327
+ for i, num_tokens in enumerate(tokens_per_expert):
328
+ end_idx = start_idx + num_tokens
329
+ if num_tokens == 0:
330
+ continue
331
+ expert = self.experts[i]
332
+ tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
333
+ expert_out = expert(tokens_for_this_expert)
334
+ outputs.append(expert_out.to(x.device))
335
+ start_idx = end_idx
336
+
337
+ outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
338
+ new_x = torch.empty_like(outs)
339
+ new_x[idxs] = outs
340
+ final_out = (
341
+ new_x.view(*topk_ids.shape, -1)
342
+ .type(topk_weight.dtype)
343
+ .mul_(topk_weight.unsqueeze(dim=-1))
344
+ .sum(dim=1)
345
+ .type(new_x.dtype)
346
+ )
347
+ return final_out
348
+
349
+
350
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
351
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
352
+ """
353
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
354
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
355
+ """
356
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
357
+ if n_rep == 1:
358
+ return hidden_states
359
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
360
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
361
+
362
+
363
+ # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->LLaDA2Moe
364
+ class LLaDA2MoeAttention(nn.Module):
365
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
366
+
367
+ def __init__(self, config: LLaDA2MoeConfig, layer_idx: Optional[int] = None):
368
+ super().__init__()
369
+ self.config = config
370
+ self.layer_idx = layer_idx
371
+ if layer_idx is None:
372
+ logger.warning_once(
373
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
374
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
375
+ "when creating this class."
376
+ )
377
+
378
+ self.attention_dropout = config.attention_dropout
379
+ self.hidden_size = config.hidden_size
380
+ self.num_heads = config.num_attention_heads
381
+ self.head_dim = config.head_dim or self.hidden_size // self.num_heads
382
+ partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
383
+ self.rope_dim = int(self.head_dim * partial_rotary_factor)
384
+ self.num_key_value_heads = config.num_key_value_heads
385
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
386
+ self.max_position_embeddings = config.max_position_embeddings
387
+ self.rope_theta = config.rope_theta
388
+ self.is_causal = False
389
+
390
+ self.query_key_value = nn.Linear(
391
+ self.hidden_size,
392
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
393
+ bias=config.use_qkv_bias,
394
+ )
395
+
396
+ self.query_layernorm = LLaDA2MoeRMSNorm(self.head_dim, eps=config.rms_norm_eps)
397
+ self.key_layernorm = LLaDA2MoeRMSNorm(self.head_dim, eps=config.rms_norm_eps)
398
+ self.dense = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.use_bias)
399
+
400
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
401
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
402
+
403
+ def forward(
404
+ self,
405
+ hidden_states: torch.Tensor,
406
+ attention_mask: Optional[torch.Tensor] = None,
407
+ position_ids: Optional[torch.LongTensor] = None,
408
+ past_key_value: Optional[Cache] = None,
409
+ output_attentions: bool = False,
410
+ use_cache: bool = False,
411
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
412
+ **kwargs,
413
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
414
+ if "padding_mask" in kwargs:
415
+ warnings.warn(
416
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
417
+ )
418
+
419
+ bsz, q_len, _ = hidden_states.size()
420
+
421
+ qkv = self.query_key_value(hidden_states)
422
+ qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
423
+
424
+ query_states, key_states, value_states = qkv.split(
425
+ [self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2
426
+ )
427
+ query_states = query_states.transpose(1, 2)
428
+ key_states = key_states.transpose(1, 2)
429
+ value_states = value_states.transpose(1, 2)
430
+
431
+ query_states = self.query_layernorm(query_states)
432
+ key_states = self.key_layernorm(key_states)
433
+
434
+ kv_seq_len = key_states.shape[-2]
435
+ if past_key_value is not None:
436
+ if self.layer_idx is None:
437
+ raise ValueError(
438
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
439
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
440
+ "with a layer index."
441
+ )
442
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
443
+ cos, sin = position_embeddings
444
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
445
+
446
+ if past_key_value is not None:
447
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
448
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
449
+
450
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
451
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
452
+
453
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
454
+
455
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
456
+ raise ValueError(
457
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
458
+ f" {attn_weights.size()}"
459
+ )
460
+ # attention_mask = None
461
+ if attention_mask is not None:
462
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
463
+ raise ValueError(
464
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
465
+ )
466
+ attn_weights = attn_weights + attention_mask
467
+
468
+ # upcast attention to fp32
469
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
470
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
471
+ attn_output = torch.matmul(attn_weights, value_states)
472
+
473
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
474
+ raise ValueError(
475
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
476
+ f" {attn_output.size()}"
477
+ )
478
+
479
+ attn_output = attn_output.transpose(1, 2).contiguous()
480
+
481
+ attn_output = attn_output.reshape(bsz, q_len, -1)
482
+
483
+ attn_output = self.dense(attn_output)
484
+
485
+ if not output_attentions:
486
+ attn_weights = None
487
+
488
+ return attn_output, attn_weights, past_key_value
489
+
490
+
491
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->LLaDA2Moe
492
+ class LLaDA2MoeFlashAttention2(LLaDA2MoeAttention):
493
+ """
494
+ LLaDA2Moe flash attention module. This module inherits from `LLaDA2MoeAttention` as the weights of the module stays
495
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
496
+ flash attention and deal with padding tokens in case the input contains any of them.
497
+ """
498
+
499
+ def __init__(self, *args, **kwargs):
500
+ super().__init__(*args, **kwargs)
501
+
502
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
503
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
504
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
505
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
506
+
507
+ def forward(
508
+ self,
509
+ hidden_states: torch.Tensor,
510
+ attention_mask: Optional[torch.LongTensor] = None,
511
+ position_ids: Optional[torch.LongTensor] = None,
512
+ past_key_value: Optional[Cache] = None,
513
+ output_attentions: bool = False,
514
+ use_cache: bool = False,
515
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
516
+ **kwargs,
517
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
518
+ # LLaDA2MoeFlashAttention2 attention does not support output_attentions
519
+ if "padding_mask" in kwargs:
520
+ warnings.warn(
521
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
522
+ )
523
+
524
+ # overwrite attention_mask with padding_mask
525
+ attention_mask = kwargs.pop("padding_mask")
526
+
527
+ output_attentions = False
528
+
529
+ bsz, q_len, _ = hidden_states.size()
530
+
531
+ # Flash attention requires the input to have the shape
532
+ # batch_size x seq_length x head_dim x hidden_dim
533
+ # therefore we just need to keep the original shape
534
+
535
+ qkv = self.query_key_value(hidden_states)
536
+ qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
537
+
538
+ query_states, key_states, value_states = qkv.split(
539
+ [self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2
540
+ )
541
+ query_states = query_states.transpose(1, 2)
542
+ key_states = key_states.transpose(1, 2)
543
+ value_states = value_states.transpose(1, 2)
544
+
545
+ query_states = self.query_layernorm(query_states)
546
+ key_states = self.key_layernorm(key_states)
547
+
548
+ kv_seq_len = key_states.shape[-2]
549
+ if past_key_value is not None:
550
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
551
+ cos, sin = position_embeddings
552
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
553
+
554
+ if past_key_value is not None:
555
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
556
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
557
+
558
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
559
+ # to be able to avoid many of these transpose/reshape/view.
560
+ query_states = query_states.transpose(1, 2)
561
+ key_states = key_states.transpose(1, 2)
562
+ value_states = value_states.transpose(1, 2)
563
+
564
+ dropout_rate = self.attention_dropout if self.training else 0.0
565
+
566
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
567
+ # therefore the input hidden states gets silently cast in float32. Hence, we need
568
+ # cast them back in the correct dtype just to be sure everything works as expected.
569
+ # This might slow down training & inference so it is recommended to not cast the LayerNorms
570
+ # in fp32. (LLaDA2MoeRMSNorm handles it correctly)
571
+
572
+ input_dtype = query_states.dtype
573
+ if input_dtype == torch.float32:
574
+ # Handle the case where the model is quantized
575
+ if hasattr(self.config, "_pre_quantization_dtype"):
576
+ target_dtype = self.config._pre_quantization_dtype
577
+ elif torch.is_autocast_enabled():
578
+ target_dtype = torch.get_autocast_gpu_dtype()
579
+ else:
580
+ target_dtype = self.query_key_value.weight.dtype
581
+
582
+ logger.warning_once(
583
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
584
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
585
+ f" {target_dtype}."
586
+ )
587
+
588
+ query_states = query_states.to(target_dtype)
589
+ key_states = key_states.to(target_dtype)
590
+ value_states = value_states.to(target_dtype)
591
+
592
+ attn_output = self._flash_attention_forward(
593
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
594
+ )
595
+
596
+ attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
597
+ attn_output = self.dense(attn_output)
598
+
599
+ if not output_attentions:
600
+ attn_weights = None
601
+
602
+ return attn_output, attn_weights, past_key_value
603
+
604
+ def _flash_attention_forward(
605
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
606
+ ):
607
+ """
608
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
609
+ first unpad the input, then computes the attention scores and pad the final attention scores.
610
+
611
+ Args:
612
+ query_states (`torch.Tensor`):
613
+ Input query states to be passed to Flash Attention API
614
+ key_states (`torch.Tensor`):
615
+ Input key states to be passed to Flash Attention API
616
+ value_states (`torch.Tensor`):
617
+ Input value states to be passed to Flash Attention API
618
+ attention_mask (`torch.Tensor`):
619
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
620
+ position of padding tokens and 1 for the position of non-padding tokens.
621
+ dropout (`int`, *optional*):
622
+ Attention dropout
623
+ softmax_scale (`float`, *optional*):
624
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
625
+ query_length (`int`):
626
+ The length of the query sequence in terms of tokens. This represents the number of tokens in the
627
+ `query_states` tensor along the sequence dimension. It is used to determine the effective sequence
628
+ length for attention computations.
629
+ """
630
+ if not self._flash_attn_uses_top_left_mask:
631
+ causal = self.is_causal
632
+ else:
633
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LLaDA2MoeFlashAttention2 __init__.
634
+ causal = self.is_causal and query_length != 1
635
+
636
+ # attention_mask = None
637
+ # Contains at least one padding token in the sequence
638
+ if attention_mask is not None:
639
+ batch_size = query_states.shape[0]
640
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
641
+ query_states, key_states, value_states, attention_mask, query_length
642
+ )
643
+
644
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
645
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
646
+
647
+ attn_output_unpad = flash_attn_varlen_func(
648
+ query_states,
649
+ key_states,
650
+ value_states,
651
+ cu_seqlens_q=cu_seqlens_q,
652
+ cu_seqlens_k=cu_seqlens_k,
653
+ max_seqlen_q=max_seqlen_in_batch_q,
654
+ max_seqlen_k=max_seqlen_in_batch_k,
655
+ dropout_p=dropout,
656
+ softmax_scale=softmax_scale,
657
+ causal=causal,
658
+ )
659
+
660
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
661
+ else:
662
+ attn_output = flash_attn_func(
663
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
664
+ )
665
+
666
+ return attn_output
667
+
668
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
669
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
670
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
671
+
672
+ key_layer = index_first_axis(
673
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
674
+ )
675
+ value_layer = index_first_axis(
676
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
677
+ )
678
+ if query_length == kv_seq_len:
679
+ query_layer = index_first_axis(
680
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
681
+ )
682
+ cu_seqlens_q = cu_seqlens_k
683
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
684
+ indices_q = indices_k
685
+ elif query_length == 1:
686
+ max_seqlen_in_batch_q = 1
687
+ cu_seqlens_q = torch.arange(
688
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
689
+ ) # There is a memcpy here, that is very bad.
690
+ indices_q = cu_seqlens_q[:-1]
691
+ query_layer = query_layer.squeeze(1)
692
+ else:
693
+ # The -q_len: slice assumes left padding.
694
+ attention_mask = attention_mask[:, -query_length:]
695
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
696
+
697
+ return (
698
+ query_layer,
699
+ key_layer,
700
+ value_layer,
701
+ indices_q,
702
+ (cu_seqlens_q, cu_seqlens_k),
703
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
704
+ )
705
+
706
+
707
+ # Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->LLaDA2Moe
708
+ class LLaDA2MoeSdpaAttention(LLaDA2MoeAttention):
709
+ """
710
+ LLaDA2Moe attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
711
+ `LLaDA2MoeAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
712
+ SDPA API.
713
+ """
714
+
715
+ # Adapted from LLaDA2MoeAttention.forward
716
+ def forward(
717
+ self,
718
+ hidden_states: torch.Tensor,
719
+ attention_mask: Optional[torch.Tensor] = None,
720
+ position_ids: Optional[torch.LongTensor] = None,
721
+ past_key_value: Optional[Cache] = None,
722
+ output_attentions: bool = False,
723
+ use_cache: bool = False,
724
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
725
+ **kwargs,
726
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
727
+ if output_attentions:
728
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
729
+ logger.warning_once(
730
+ "LLaDA2MoeModel is using LLaDA2MoeSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
731
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
732
+ )
733
+ return super().forward(
734
+ hidden_states=hidden_states,
735
+ attention_mask=attention_mask,
736
+ position_ids=position_ids,
737
+ past_key_value=past_key_value,
738
+ output_attentions=output_attentions,
739
+ use_cache=use_cache,
740
+ )
741
+
742
+ bsz, q_len, _ = hidden_states.size()
743
+
744
+ qkv = self.query_key_value(hidden_states)
745
+ qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
746
+
747
+ query_states, key_states, value_states = qkv.split(
748
+ [self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2
749
+ )
750
+ query_states = query_states.transpose(1, 2)
751
+ key_states = key_states.transpose(1, 2)
752
+ value_states = value_states.transpose(1, 2)
753
+
754
+ query_states = self.query_layernorm(query_states)
755
+ key_states = self.key_layernorm(key_states)
756
+
757
+ kv_seq_len = key_states.shape[-2]
758
+ if past_key_value is not None:
759
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
760
+ cos, sin = position_embeddings
761
+
762
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
763
+
764
+ if past_key_value is not None:
765
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
766
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
767
+
768
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
769
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
770
+
771
+ # attention_mask = None
772
+ if attention_mask is not None:
773
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
774
+ raise ValueError(
775
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
776
+ )
777
+
778
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
779
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
780
+ if query_states.device.type == "cuda" and attention_mask is not None:
781
+ query_states = query_states.contiguous()
782
+ key_states = key_states.contiguous()
783
+ value_states = value_states.contiguous()
784
+
785
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
786
+ query_states,
787
+ key_states,
788
+ value_states,
789
+ attn_mask=attention_mask,
790
+ dropout_p=self.attention_dropout if self.training else 0.0,
791
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
792
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
793
+ )
794
+
795
+ attn_output = attn_output.transpose(1, 2).contiguous()
796
+ attn_output = attn_output.reshape(bsz, q_len, -1)
797
+
798
+ attn_output = self.dense(attn_output)
799
+
800
+ return attn_output, None, past_key_value
801
+
802
+
803
+ ATTENTION_CLASSES = {
804
+ "eager": LLaDA2MoeAttention,
805
+ "flash_attention_2": LLaDA2MoeFlashAttention2,
806
+ "sdpa": LLaDA2MoeSdpaAttention,
807
+ }
808
+
809
+
810
+ class LLaDA2MoeDecoderLayer(nn.Module):
811
+ def __init__(self, config: LLaDA2MoeConfig, layer_idx: int):
812
+ super().__init__()
813
+ self.hidden_size = config.hidden_size
814
+
815
+ self.attention = ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
816
+
817
+ self.mlp = (
818
+ LLaDA2MoeSparseMoeBlock(config)
819
+ if (config.num_experts is not None and layer_idx >= config.first_k_dense_replace)
820
+ else LLaDA2MoeMLP(config=config, intermediate_size=config.intermediate_size)
821
+ )
822
+ self.input_layernorm = LLaDA2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
823
+ self.post_attention_layernorm = LLaDA2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
824
+
825
+ def forward(
826
+ self,
827
+ hidden_states: torch.Tensor,
828
+ attention_mask: Optional[torch.Tensor] = None,
829
+ position_ids: Optional[torch.LongTensor] = None,
830
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
831
+ output_attentions: Optional[bool] = False,
832
+ output_router_logits: Optional[bool] = False,
833
+ use_cache: Optional[bool] = False,
834
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
835
+ **kwargs,
836
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
837
+ """
838
+ Args:
839
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
840
+ attention_mask (`torch.FloatTensor`, *optional*):
841
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
842
+ query_sequence_length, key_sequence_length)` if default attention is used.
843
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
844
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
845
+ config.n_positions - 1]`.
846
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*):
847
+ cached past key and value projection states
848
+ output_attentions (`bool`, *optional*):
849
+ Whether to return the attentions tensors of all attention layers. See `attentions` under
850
+ returned tensors for more detail.
851
+ output_router_logits (`bool`, *optional*):
852
+ Whether or not to return the logits of all the routers. They are useful for computing the router loss,
853
+ and should not be returned during inference.
854
+ use_cache (`bool`, *optional*):
855
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
856
+ (see `past_key_values`).
857
+ """
858
+ if "padding_mask" in kwargs:
859
+ warnings.warn(
860
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
861
+ )
862
+ residual = hidden_states
863
+
864
+ hidden_states = self.input_layernorm(hidden_states)
865
+
866
+ # Self Attention
867
+ hidden_states, self_attn_weights, present_key_value = self.attention(
868
+ hidden_states=hidden_states,
869
+ attention_mask=attention_mask,
870
+ position_ids=position_ids,
871
+ past_key_value=past_key_value,
872
+ output_attentions=output_attentions,
873
+ position_embeddings=position_embeddings,
874
+ use_cache=use_cache,
875
+ )
876
+ hidden_states = residual + hidden_states
877
+
878
+ # Fully Connected
879
+ residual = hidden_states
880
+ hidden_states = self.post_attention_layernorm(hidden_states)
881
+ hidden_states = self.mlp(hidden_states)
882
+ if isinstance(hidden_states, tuple):
883
+ hidden_states, router_logits = hidden_states
884
+ else:
885
+ router_logits = None
886
+ hidden_states = residual + hidden_states.to(residual.device)
887
+
888
+ outputs = (hidden_states,)
889
+
890
+ if output_attentions:
891
+ outputs += (self_attn_weights,)
892
+
893
+ if use_cache:
894
+ outputs += (present_key_value,)
895
+
896
+ if output_router_logits:
897
+ outputs += (router_logits,)
898
+
899
+ return outputs
900
+
901
+
902
+ LLADA2MOE_START_DOCSTRING = r"""
903
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
904
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
905
+ etc.)
906
+
907
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
908
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
909
+ and behavior.
910
+
911
+ Parameters:
912
+ config ([`LLaDA2MoeConfig`]):
913
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
914
+ load the weights associated with the model, only the configuration. Check out the
915
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
916
+ """
917
+
918
+
919
+ @add_start_docstrings(
920
+ "The bare LLaDA2Moe Model outputting raw hidden-states without any specific head on top.",
921
+ LLADA2MOE_START_DOCSTRING,
922
+ )
923
+ class LLaDA2MoePreTrainedModel(PreTrainedModel):
924
+ config_class = LLaDA2MoeConfig
925
+ base_model_prefix = "model"
926
+ supports_gradient_checkpointing = True
927
+ _no_split_modules = ["LLaDA2MoeDecoderLayer"]
928
+ _skip_keys_device_placement = "past_key_values"
929
+ _supports_flash_attn_2 = True
930
+ _supports_sdpa = True
931
+ _supports_cache_class = True
932
+
933
+ def _init_weights(self, module):
934
+ std = self.config.initializer_range
935
+ if isinstance(module, nn.Linear):
936
+ module.weight.data.normal_(mean=0.0, std=std)
937
+ if module.bias is not None:
938
+ module.bias.data.zero_()
939
+ elif isinstance(module, nn.Embedding):
940
+ module.weight.data.normal_(mean=0.0, std=std)
941
+ if module.padding_idx is not None:
942
+ module.weight.data[module.padding_idx].zero_()
943
+
944
+
945
+ LLADA2MOE_INPUTS_DOCSTRING = r"""
946
+ Args:
947
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
948
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
949
+ it.
950
+
951
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
952
+ [`PreTrainedTokenizer.__call__`] for details.
953
+
954
+ [What are input IDs?](../glossary#input-ids)
955
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
956
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
957
+
958
+ - 1 for tokens that are **not masked**,
959
+ - 0 for tokens that are **masked**.
960
+
961
+ [What are attention masks?](../glossary#attention-mask)
962
+
963
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
964
+ [`PreTrainedTokenizer.__call__`] for details.
965
+
966
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
967
+ `past_key_values`).
968
+
969
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
970
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
971
+ information on the default strategy.
972
+
973
+ - 1 indicates the head is **not masked**,
974
+ - 0 indicates the head is **masked**.
975
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
976
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
977
+ config.n_positions - 1]`.
978
+
979
+ [What are position IDs?](../glossary#position-ids)
980
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
981
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
982
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
983
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
984
+
985
+ Two formats are allowed:
986
+ - a [`~cache_utils.Cache`] instance;
987
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
988
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
989
+ cache format.
990
+
991
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
992
+ legacy cache format will be returned.
993
+
994
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
995
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
996
+ of shape `(batch_size, sequence_length)`.
997
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
998
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
999
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1000
+ model's internal embedding lookup matrix.
1001
+ use_cache (`bool`, *optional*):
1002
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1003
+ `past_key_values`).
1004
+ output_attentions (`bool`, *optional*):
1005
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1006
+ tensors for more detail.
1007
+ output_hidden_states (`bool`, *optional*):
1008
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1009
+ more detail.
1010
+ return_dict (`bool`, *optional*):
1011
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1012
+ """
1013
+
1014
+
1015
+ @add_start_docstrings(
1016
+ "The bare LLaDA2Moe Model outputting raw hidden-states without any specific head on top.",
1017
+ LLADA2MOE_START_DOCSTRING,
1018
+ )
1019
+ class LLaDA2MoeModel(LLaDA2MoePreTrainedModel):
1020
+ """
1021
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LLaDA2MoeDecoderLayer`]
1022
+
1023
+ Args:
1024
+ config: LLaDA2MoeConfig
1025
+ """
1026
+
1027
+ def __init__(self, config: LLaDA2MoeConfig):
1028
+ super().__init__(config)
1029
+ self.padding_idx = config.pad_token_id
1030
+ self.vocab_size = config.vocab_size
1031
+
1032
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1033
+ self.layers = nn.ModuleList(
1034
+ [LLaDA2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
1035
+ )
1036
+ self._use_sdpa = config._attn_implementation == "sdpa"
1037
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
1038
+ self.norm = LLaDA2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1039
+ self.rotary_emb = LLaDA2MoeRotaryEmbedding(config=config)
1040
+ self.gradient_checkpointing = False
1041
+ # Initialize weights and apply final processing
1042
+ self.post_init()
1043
+
1044
+ def get_input_embeddings(self):
1045
+ return self.word_embeddings
1046
+
1047
+ def set_input_embeddings(self, value):
1048
+ self.word_embeddings = value
1049
+
1050
+ @add_start_docstrings_to_model_forward(LLADA2MOE_INPUTS_DOCSTRING)
1051
+ def forward(
1052
+ self,
1053
+ input_ids: torch.LongTensor = None,
1054
+ attention_mask: Optional[torch.Tensor] = None,
1055
+ position_ids: Optional[torch.LongTensor] = None,
1056
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1057
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1058
+ use_cache: Optional[bool] = None,
1059
+ output_attentions: Optional[bool] = None,
1060
+ output_hidden_states: Optional[bool] = None,
1061
+ output_router_logits: Optional[bool] = None,
1062
+ return_dict: Optional[bool] = None,
1063
+ **kwargs,
1064
+ ) -> Union[Tuple, MoeModelOutputWithPast]:
1065
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1066
+ output_hidden_states = (
1067
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1068
+ )
1069
+ output_router_logits = (
1070
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
1071
+ )
1072
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1073
+
1074
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1075
+
1076
+ # retrieve input_ids and inputs_embeds
1077
+ if input_ids is not None and inputs_embeds is not None:
1078
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1079
+ elif input_ids is not None:
1080
+ batch_size, seq_length = input_ids.shape[:2]
1081
+ elif inputs_embeds is not None:
1082
+ batch_size, seq_length = inputs_embeds.shape[:2]
1083
+ else:
1084
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1085
+
1086
+ if self.gradient_checkpointing and self.training:
1087
+ if use_cache:
1088
+ logger.warning_once(
1089
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers."
1090
+ )
1091
+ use_cache = False
1092
+
1093
+ past_key_values_length = 0
1094
+ if use_cache:
1095
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1096
+ if use_legacy_cache:
1097
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1098
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1099
+
1100
+ if position_ids is None:
1101
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1102
+ position_ids = torch.arange(
1103
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1104
+ )
1105
+ position_ids = position_ids.unsqueeze(0)
1106
+
1107
+ if inputs_embeds is None:
1108
+ inputs_embeds = self.word_embeddings(input_ids)
1109
+
1110
+ # TODO flash attention 2 can not support custom attention mask
1111
+ # if self._use_flash_attention_2:
1112
+ # # 2d mask is passed through the layers
1113
+ # attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1114
+ if self._use_sdpa and not output_attentions:
1115
+ # output_attentions=True can not be supported when using SDPA, and we fall back on
1116
+ # the manual implementation that requires a 4D causal mask in all cases.
1117
+ attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
1118
+ attention_mask,
1119
+ (batch_size, seq_length),
1120
+ inputs_embeds,
1121
+ past_key_values_length,
1122
+ )
1123
+ else:
1124
+ # 4d mask is passed through the layers
1125
+ attention_mask = _prepare_4d_causal_attention_mask(
1126
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
1127
+ )
1128
+
1129
+ # embed positions
1130
+ hidden_states = inputs_embeds
1131
+
1132
+ # create position embeddings to be shared across the decoder layers
1133
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
1134
+
1135
+ # decoder layers
1136
+ all_hidden_states = () if output_hidden_states else None
1137
+ all_self_attns = () if output_attentions else None
1138
+ all_router_logits = () if output_router_logits else None
1139
+ next_decoder_cache = None
1140
+
1141
+ for decoder_layer in self.layers:
1142
+ if output_hidden_states:
1143
+ all_hidden_states += (hidden_states,)
1144
+
1145
+ if self.gradient_checkpointing and self.training:
1146
+ layer_outputs = self._gradient_checkpointing_func(
1147
+ decoder_layer.__call__,
1148
+ hidden_states,
1149
+ attention_mask,
1150
+ position_ids,
1151
+ past_key_values,
1152
+ output_attentions,
1153
+ output_router_logits,
1154
+ use_cache,
1155
+ position_embeddings,
1156
+ )
1157
+ else:
1158
+ layer_outputs = decoder_layer(
1159
+ hidden_states,
1160
+ attention_mask=attention_mask,
1161
+ position_ids=position_ids,
1162
+ past_key_value=past_key_values,
1163
+ output_attentions=output_attentions,
1164
+ output_router_logits=output_router_logits,
1165
+ use_cache=use_cache,
1166
+ position_embeddings=position_embeddings,
1167
+ )
1168
+ hidden_states = layer_outputs[0]
1169
+
1170
+ if use_cache:
1171
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1172
+
1173
+ if output_attentions:
1174
+ all_self_attns += (layer_outputs[1],)
1175
+
1176
+ if output_router_logits and layer_outputs[-1] is not None:
1177
+ all_router_logits += (layer_outputs[-1],)
1178
+
1179
+ hidden_states = self.norm(hidden_states)
1180
+
1181
+ # add hidden states from the last decoder layer
1182
+ if output_hidden_states:
1183
+ all_hidden_states += (hidden_states,)
1184
+
1185
+ next_cache = None
1186
+ if use_cache:
1187
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1188
+ if not return_dict:
1189
+ return tuple(
1190
+ v
1191
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
1192
+ if v is not None
1193
+ )
1194
+ return MoeModelOutputWithPast(
1195
+ last_hidden_state=hidden_states,
1196
+ past_key_values=next_cache,
1197
+ hidden_states=all_hidden_states,
1198
+ attentions=all_self_attns,
1199
+ router_logits=all_router_logits,
1200
+ )
1201
+
1202
+
1203
+ class LLaDA2MoeModelLM(LLaDA2MoePreTrainedModel, GenerationMixin):
1204
+ _tied_weights_keys = ["lm_head.weight"]
1205
+
1206
+ def __init__(self, config: LLaDA2MoeConfig):
1207
+ super().__init__(config)
1208
+ self.model = LLaDA2MoeModel(config)
1209
+ self.vocab_size = config.vocab_size
1210
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1211
+
1212
+ # Initialize weights and apply final processing
1213
+ self.post_init()
1214
+
1215
+ def get_input_embeddings(self):
1216
+ return self.model.word_embeddings
1217
+
1218
+ def set_input_embeddings(self, value):
1219
+ self.model.word_embeddings = value
1220
+
1221
+ def get_output_embeddings(self):
1222
+ return self.lm_head
1223
+
1224
+ def set_output_embeddings(self, new_embeddings):
1225
+ self.lm_head = new_embeddings
1226
+
1227
+ def set_decoder(self, decoder):
1228
+ self.model = decoder
1229
+
1230
+ def get_decoder(self):
1231
+ return self.model
1232
+
1233
+ @add_start_docstrings_to_model_forward(LLADA2MOE_INPUTS_DOCSTRING)
1234
+ @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1235
+ def forward(
1236
+ self,
1237
+ input_ids: torch.LongTensor = None,
1238
+ attention_mask: Optional[torch.Tensor] = None,
1239
+ position_ids: Optional[torch.LongTensor] = None,
1240
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1241
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1242
+ labels: Optional[torch.LongTensor] = None,
1243
+ use_cache: Optional[bool] = None,
1244
+ output_attentions: Optional[bool] = None,
1245
+ output_hidden_states: Optional[bool] = None,
1246
+ output_router_logits: Optional[bool] = None,
1247
+ return_dict: Optional[bool] = None,
1248
+ **kwargs,
1249
+ ) -> Union[Tuple, MoeCausalLMOutputWithPast]:
1250
+ r"""
1251
+ Args:
1252
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1253
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1254
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1255
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1256
+
1257
+ Returns:
1258
+
1259
+ Example:
1260
+
1261
+ ```python
1262
+ >>> from transformers import AutoTokenizer
1263
+
1264
+ >>> model = LLaDA2MoeForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1265
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1266
+
1267
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1268
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1269
+
1270
+ >>> # Generate
1271
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1272
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1273
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1274
+ ```"""
1275
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1276
+ output_hidden_states = (
1277
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1278
+ )
1279
+ output_router_logits = (
1280
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
1281
+ )
1282
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1283
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1284
+ outputs = self.model(
1285
+ input_ids=input_ids,
1286
+ attention_mask=attention_mask,
1287
+ position_ids=position_ids,
1288
+ past_key_values=past_key_values,
1289
+ inputs_embeds=inputs_embeds,
1290
+ use_cache=use_cache,
1291
+ output_attentions=output_attentions,
1292
+ output_hidden_states=output_hidden_states,
1293
+ output_router_logits=output_router_logits,
1294
+ return_dict=return_dict,
1295
+ **kwargs,
1296
+ )
1297
+
1298
+ hidden_states = outputs[0]
1299
+
1300
+ logits = self.lm_head(hidden_states)
1301
+ logits = logits.float()
1302
+
1303
+ loss = None
1304
+ aux_loss = None
1305
+
1306
+ if labels is not None:
1307
+ # Shift so that tokens < n predict n
1308
+ shift_logits = logits[..., :-1, :].contiguous()
1309
+ shift_labels = labels[..., 1:].contiguous()
1310
+ # Flatten the tokens
1311
+ loss_fct = CrossEntropyLoss()
1312
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1313
+ shift_labels = shift_labels.view(-1)
1314
+ # Enable model parallelism
1315
+ shift_labels = shift_labels.to(shift_logits.device)
1316
+ loss = loss_fct(shift_logits, shift_labels)
1317
+
1318
+ if not return_dict:
1319
+ output = (logits,) + outputs[1:]
1320
+ if output_router_logits:
1321
+ output = (aux_loss,) + output
1322
+ return (loss,) + output if loss is not None else output
1323
+
1324
+ return MoeCausalLMOutputWithPast(
1325
+ loss=loss,
1326
+ aux_loss=aux_loss,
1327
+ logits=logits,
1328
+ past_key_values=outputs.past_key_values,
1329
+ hidden_states=outputs.hidden_states,
1330
+ attentions=outputs.attentions,
1331
+ router_logits=outputs.router_logits,
1332
+ )
1333
+
1334
+ def prepare_inputs_for_generation(
1335
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, token_type_ids=None, **kwargs
1336
+ ):
1337
+ if past_key_values is not None:
1338
+ if isinstance(past_key_values, Cache):
1339
+ cache_length = past_key_values.get_seq_length()
1340
+ past_length = past_key_values.seen_tokens
1341
+ max_cache_length = (
1342
+ past_key_values.get_max_length()
1343
+ if hasattr(past_key_values, "get_max_length")
1344
+ else past_key_values.get_max_cache_shape()
1345
+ )
1346
+ else:
1347
+ cache_length = past_length = past_key_values[0][0].shape[2]
1348
+ max_cache_length = None
1349
+
1350
+ # Keep only the unprocessed tokens:
1351
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1352
+ # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as input)
1353
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1354
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1355
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1356
+ # input_ids based on the past_length.
1357
+ elif past_length < input_ids.shape[1]:
1358
+ input_ids = input_ids[:, past_length:]
1359
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1360
+
1361
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1362
+ if (
1363
+ max_cache_length is not None
1364
+ and attention_mask is not None
1365
+ and cache_length + input_ids.shape[1] > max_cache_length
1366
+ ):
1367
+ attention_mask = attention_mask[:, -max_cache_length:]
1368
+
1369
+ position_ids = kwargs.get("position_ids", None)
1370
+ if attention_mask is not None and position_ids is None:
1371
+ # create position_ids on the fly for batch generation
1372
+ position_ids = attention_mask.long().cumsum(-1) - 1
1373
+ position_ids.masked_fill_(attention_mask == 0, 1)
1374
+ if past_key_values:
1375
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1376
+
1377
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1378
+ if inputs_embeds is not None and past_key_values is None:
1379
+ model_inputs = {"inputs_embeds": inputs_embeds}
1380
+ else:
1381
+ model_inputs = {"input_ids": input_ids}
1382
+
1383
+ model_inputs.update(
1384
+ {
1385
+ "position_ids": position_ids,
1386
+ "past_key_values": past_key_values,
1387
+ "use_cache": kwargs.get("use_cache"),
1388
+ "attention_mask": attention_mask,
1389
+ }
1390
+ )
1391
+ return model_inputs
1392
+
1393
+ @staticmethod
1394
+ def _reorder_cache(past_key_values, beam_idx):
1395
+ reordered_past = ()
1396
+ for layer_past in past_key_values:
1397
+ reordered_past += (
1398
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1399
+ )
1400
+ return reordered_past
1401
+
1402
+ @staticmethod
1403
+ def _top_k_logits(logits, k):
1404
+ if k is None or k <= 0:
1405
+ return logits
1406
+ else:
1407
+ values, _ = torch.topk(logits, k)
1408
+ min_values = values[..., -1, None]
1409
+ return torch.where(
1410
+ logits < min_values, torch.full_like(logits, float("-inf")), logits
1411
+ )
1412
+
1413
+ @staticmethod
1414
+ def _top_p_logits(logits, p):
1415
+ if p is None or p >= 1.0:
1416
+ return logits
1417
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True)
1418
+ cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
1419
+ sorted_mask = cumulative_probs > p
1420
+ sorted_mask[..., 1:] = sorted_mask[..., :-1].clone()
1421
+ sorted_mask[..., 0] = False
1422
+ mask_indices = torch.scatter(
1423
+ torch.full_like(logits, False, dtype=torch.bool),
1424
+ -1,
1425
+ sorted_indices,
1426
+ sorted_mask,
1427
+ )
1428
+ return logits.masked_fill(mask_indices, float("-inf"))
1429
+
1430
+ def _sample_with_temperature_topk_topp(self, logits, temperature=1.0, top_k=0, top_p=1.0):
1431
+ orig_shape = logits.shape[:-1]
1432
+ vocab_size = logits.shape[-1]
1433
+ logits = logits.reshape(-1, vocab_size)
1434
+ if temperature > 0 and temperature != 1.0:
1435
+ logits = logits / temperature
1436
+ logits = self._top_k_logits(logits, top_k)
1437
+ logits = self._top_p_logits(logits, top_p)
1438
+ probs = F.softmax(logits, dim=-1)
1439
+ token = torch.multinomial(probs, num_samples=1)
1440
+ token_prob = torch.gather(probs, -1, token)
1441
+ return token.view(*orig_shape), token_prob.view(*orig_shape)
1442
+
1443
+ @staticmethod
1444
+ def _get_num_transfer_tokens(block_length, steps):
1445
+ if steps == 0:
1446
+ return torch.tensor([], dtype=torch.int64)
1447
+ base = block_length // steps
1448
+ remainder = block_length % steps
1449
+ num_transfer_tokens = torch.full((steps,), base, dtype=torch.int64)
1450
+ num_transfer_tokens[:remainder] += 1
1451
+ return num_transfer_tokens
1452
+
1453
+ @torch.no_grad()
1454
+ def generate(
1455
+ self,
1456
+ inputs: Optional[torch.Tensor] = None,
1457
+ temperature: int = 0.0,
1458
+ block_length: int = 32,
1459
+ steps: int = 32,
1460
+ gen_length: int = 2048,
1461
+ top_p: Optional[int] = None,
1462
+ top_k: Optional[int] = None,
1463
+ eos_early_stop: bool = False,
1464
+ minimal_topk: int = 1,
1465
+ threshold: float = 0.95,
1466
+ eos_id: int = 156892,
1467
+ mask_id: int = 156895,
1468
+ ):
1469
+ r"""
1470
+ Generates tokens using a block-wise, iterative refinement strategy.
1471
+
1472
+ This method operates differently from standard autoregressive generation. It first creates a template of the
1473
+ full desired length, filled with a special `mask_id`. It then processes this template in segments (`blocks`)
1474
+ and iteratively "denoises" or "refines" the `mask_id` tokens into actual tokens over a series of `steps` for
1475
+ each block. A custom block-diagonal causal attention mask ensures that generation within a block can attend to
1476
+ all previous blocks but not future ones.
1477
+
1478
+ <Tip warning={true}>
1479
+
1480
+ This is a specialized generation method. The quality and speed of the output are highly dependent on the interplay
1481
+ between `block_length`, `steps`, and `threshold`. It aims to achieve faster generation through parallel
1482
+ decoding within blocks, which is a departure from the token-by-token generation of standard `.generate()` methods.
1483
+
1484
+ </Tip>
1485
+
1486
+ Parameters:
1487
+ inputs (`torch.Tensor`):
1488
+ The token sequence used as a prompt for the generation.
1489
+ temperature (`float`, *optional*, defaults to 0.0):
1490
+ The value used to module the next token probabilities. A value of 0.0 corresponds to greedy decoding.
1491
+ block_length (`int`, *optional*, defaults to 32):
1492
+ The size of each generation block. The model generates text in parallel within these blocks. This is a
1493
+ key parameter for controlling the granularity of the generation process.
1494
+ steps (`int`, *optional*, defaults to 32):
1495
+ The number of iterative refinement (or "denoising") steps to perform for each block. Within each block,
1496
+ the model will try to replace `mask_id` tokens with real tokens for this many iterations.
1497
+ gen_length (`int`, *optional*, defaults to 2048):
1498
+ The maximum number of tokens to generate, excluding the prompt.
1499
+ top_p (`float`, *optional*):
1500
+ If set to a float value between 0 and 1, only the most probable tokens with probabilities that add up to
1501
+ `top_p` or higher are kept for generation (nucleus sampling).
1502
+ top_k (`int`, *optional*):
1503
+ The number of highest probability vocabulary tokens to keep for top-k-filtering.
1504
+ eos_early_stop (`bool`, *optional*, defaults to `False`):
1505
+ If `True`, generation will stop as soon as a valid End-Of-Sequence token is generated and confirmed,
1506
+ even if `gen_length` has not been reached.
1507
+ minimal_topk (`int`, *optional*, defaults to 1):
1508
+ A parameter used to dynamically adjust the number of refinement `steps`. The effective number of steps
1509
+ is capped at `gen_length // minimal_topk`.
1510
+ threshold (`float`, *optional*, defaults to 0.95):
1511
+ The confidence probability threshold for accepting a sampled token. During each refinement step, a
1512
+ sampled token is only kept if its probability is above this threshold. If not enough tokens meet the
1513
+ threshold, the ones with the highest confidence are chosen.
1514
+ eos_id (`int`, *optional*, defaults to 156892):
1515
+ The token ID for the end-of-sequence token. Used for `eos_early_stop`.
1516
+ mask_id (`int`, *optional*, defaults to 156895):
1517
+ The token ID used as a placeholder for tokens that are yet to be generated. This is central to the
1518
+ iterative refinement algorithm.
1519
+
1520
+ Return:
1521
+ `torch.Tensor`: A string containing the generated token IDs, starting
1522
+ after the prompt and stopping at the first `eos_id` or `gen_length`.
1523
+ """
1524
+ steps = min(steps, gen_length // minimal_topk)
1525
+ input_ids = inputs.to(self.device)
1526
+
1527
+ prompt_length = input_ids.shape[1]
1528
+ num_blocks = (prompt_length + gen_length + block_length - 1) // block_length
1529
+ total_length = num_blocks * block_length
1530
+
1531
+ block_mask = torch.tril(torch.ones(num_blocks, num_blocks, device=self.device))
1532
+ block_diffusion_attention_mask = (
1533
+ block_mask.repeat_interleave(block_length, dim=0)
1534
+ .repeat_interleave(block_length, dim=1)
1535
+ .unsqueeze(0)
1536
+ .unsqueeze(0)
1537
+ ).bool()
1538
+ block_diffusion_attention_mask = torch.where(
1539
+ block_diffusion_attention_mask, 0.0, float("-inf")
1540
+ ).to(torch.bfloat16)
1541
+
1542
+ position_ids = torch.arange(total_length, device=self.device).unsqueeze(0)
1543
+ x = torch.full((1, total_length), mask_id, dtype=torch.long, device=self.device)
1544
+ x[:, :prompt_length] = input_ids.clone()
1545
+
1546
+ prompt_index_full = torch.zeros_like(x, dtype=torch.bool)
1547
+ prompt_index_full[:, :prompt_length] = True
1548
+
1549
+ prefill_blocks = prompt_length // block_length
1550
+
1551
+ denoising_steps_per_block = steps
1552
+ num_transfer_tokens_schedule = self._get_num_transfer_tokens(
1553
+ block_length, denoising_steps_per_block
1554
+ )
1555
+ for num_block in range(prefill_blocks, num_blocks):
1556
+ current_window_end = (num_block + 1) * block_length
1557
+ cur_x = x[:, :current_window_end]
1558
+ cur_attn_mask = block_diffusion_attention_mask[
1559
+ :, :, :current_window_end, :current_window_end
1560
+ ]
1561
+ cur_position_ids = position_ids[:, :current_window_end]
1562
+
1563
+ for step in range(denoising_steps_per_block):
1564
+ active_block_mask = cur_x[:, -block_length:] == mask_id
1565
+ if active_block_mask.sum() == 0:
1566
+ break
1567
+
1568
+ logits = self.forward(
1569
+ cur_x,
1570
+ attention_mask=cur_attn_mask,
1571
+ position_ids=cur_position_ids,
1572
+ ).logits
1573
+
1574
+ active_logits = logits[:, -block_length:, :]
1575
+ x0, x0_p = self._sample_with_temperature_topk_topp(
1576
+ active_logits, temperature=temperature, top_k=top_k, top_p=top_p
1577
+ )
1578
+
1579
+ num_to_transfer = num_transfer_tokens_schedule[step].item()
1580
+ transfer_index = torch.zeros_like(x0, dtype=torch.bool)
1581
+
1582
+ confidence = torch.where(active_block_mask, x0_p, -torch.inf)
1583
+ high_conf_mask = confidence[0] > threshold
1584
+ num_high_confidence = high_conf_mask.sum().item()
1585
+
1586
+ if num_high_confidence >= num_to_transfer:
1587
+ transfer_index[0] = high_conf_mask
1588
+ else:
1589
+ _, idx = torch.topk(
1590
+ confidence[0],
1591
+ k=min(num_to_transfer, active_block_mask.sum().item()),
1592
+ )
1593
+ transfer_index[0, idx] = True
1594
+
1595
+ if transfer_index.any():
1596
+ cur_x[:, -block_length:][transfer_index] = x0[transfer_index]
1597
+ if eos_early_stop and (x0[transfer_index] == eos_id).any():
1598
+ eos_pos_in_x = (cur_x[0] == eos_id).nonzero(as_tuple=True)
1599
+ if len(eos_pos_in_x[0]) > 0:
1600
+ eos_pos = eos_pos_in_x[0][0].item()
1601
+ if (cur_x[0, prompt_length:eos_pos] != mask_id).all():
1602
+ final_x = x[:, :total_length][:, : eos_pos + 1]
1603
+ return final_x
1604
+
1605
+ x[:, :current_window_end] = cur_x
1606
+ if (
1607
+ eos_id is not None
1608
+ and (x[0, prompt_length:current_window_end] == eos_id).any()
1609
+ ):
1610
+ break
1611
+
1612
+ generated_answer = x[:, : prompt_length + gen_length]
1613
+
1614
+ mask_positions = (generated_answer[0][input_ids.shape[1] :] == eos_id).nonzero(
1615
+ as_tuple=True
1616
+ )[0]
1617
+ if len(mask_positions) > 0:
1618
+ first_mask_position = mask_positions[0].item()
1619
+ else:
1620
+ first_mask_position = gen_length
1621
+ return generated_answer[:, input_ids.shape[1] : input_ids.shape[1] + first_mask_position + 1]
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<|mask|>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:878eb900ea4a42da7e54bc18ad38352bec005bbfd81bdf76a5ecf1aad1093a6c
3
+ size 12205801
tokenizer_config.json ADDED
@@ -0,0 +1,2115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "156891": {
6
+ "content": "<|startoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "156892": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "156893": {
22
+ "content": "[CLS]",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "156894": {
30
+ "content": "[gMASK]",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "156895": {
38
+ "content": "<|mask|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "156896": {
46
+ "content": "<tool_call>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "156897": {
54
+ "content": "</tool_call>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "156898": {
62
+ "content": "<tool_response>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "156899": {
70
+ "content": "</tool_response>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "156900": {
78
+ "content": "<|role_end|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "156901": {
86
+ "content": "<|reserved_token_6|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "156902": {
94
+ "content": "<|reserved_token_7|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "156903": {
102
+ "content": "<|reserved_token_8|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "156904": {
110
+ "content": "<|reserved_token_9|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "156905": {
118
+ "content": "<|reserved_token_10|>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": true
124
+ },
125
+ "156906": {
126
+ "content": "<|reserved_token_11|>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": true
132
+ },
133
+ "156907": {
134
+ "content": "<|reserved_token_12|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": true
140
+ },
141
+ "156908": {
142
+ "content": "<|reserved_token_13|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": true
148
+ },
149
+ "156909": {
150
+ "content": "<|reserved_token_14|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": true
156
+ },
157
+ "156910": {
158
+ "content": "<|reserved_token_15|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": true
164
+ },
165
+ "156911": {
166
+ "content": "<|reserved_token_16|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": true
172
+ },
173
+ "156912": {
174
+ "content": "<|reserved_token_17|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": true
180
+ },
181
+ "156913": {
182
+ "content": "<|reserved_token_18|>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": true
188
+ },
189
+ "156914": {
190
+ "content": "<|reserved_token_19|>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": true
196
+ },
197
+ "156915": {
198
+ "content": "<|reserved_token_20|>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": true
204
+ },
205
+ "156916": {
206
+ "content": "<|reserved_token_21|>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": true
212
+ },
213
+ "156917": {
214
+ "content": "<|reserved_token_22|>",
215
+ "lstrip": false,
216
+ "normalized": false,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": true
220
+ },
221
+ "156918": {
222
+ "content": "<|reserved_token_23|>",
223
+ "lstrip": false,
224
+ "normalized": false,
225
+ "rstrip": false,
226
+ "single_word": false,
227
+ "special": true
228
+ },
229
+ "156919": {
230
+ "content": "<|reserved_token_24|>",
231
+ "lstrip": false,
232
+ "normalized": false,
233
+ "rstrip": false,
234
+ "single_word": false,
235
+ "special": true
236
+ },
237
+ "156920": {
238
+ "content": "<|reserved_token_25|>",
239
+ "lstrip": false,
240
+ "normalized": false,
241
+ "rstrip": false,
242
+ "single_word": false,
243
+ "special": true
244
+ },
245
+ "156921": {
246
+ "content": "<|reserved_token_26|>",
247
+ "lstrip": false,
248
+ "normalized": false,
249
+ "rstrip": false,
250
+ "single_word": false,
251
+ "special": true
252
+ },
253
+ "156922": {
254
+ "content": "<|reserved_token_27|>",
255
+ "lstrip": false,
256
+ "normalized": false,
257
+ "rstrip": false,
258
+ "single_word": false,
259
+ "special": true
260
+ },
261
+ "156923": {
262
+ "content": "<|reserved_token_28|>",
263
+ "lstrip": false,
264
+ "normalized": false,
265
+ "rstrip": false,
266
+ "single_word": false,
267
+ "special": true
268
+ },
269
+ "156924": {
270
+ "content": "<|reserved_token_29|>",
271
+ "lstrip": false,
272
+ "normalized": false,
273
+ "rstrip": false,
274
+ "single_word": false,
275
+ "special": true
276
+ },
277
+ "156925": {
278
+ "content": "<|reserved_token_30|>",
279
+ "lstrip": false,
280
+ "normalized": false,
281
+ "rstrip": false,
282
+ "single_word": false,
283
+ "special": true
284
+ },
285
+ "156926": {
286
+ "content": "<|reserved_token_31|>",
287
+ "lstrip": false,
288
+ "normalized": false,
289
+ "rstrip": false,
290
+ "single_word": false,
291
+ "special": true
292
+ },
293
+ "156927": {
294
+ "content": "<|reserved_token_32|>",
295
+ "lstrip": false,
296
+ "normalized": false,
297
+ "rstrip": false,
298
+ "single_word": false,
299
+ "special": true
300
+ },
301
+ "156928": {
302
+ "content": "<|reserved_token_33|>",
303
+ "lstrip": false,
304
+ "normalized": false,
305
+ "rstrip": false,
306
+ "single_word": false,
307
+ "special": true
308
+ },
309
+ "156929": {
310
+ "content": "<|reserved_token_34|>",
311
+ "lstrip": false,
312
+ "normalized": false,
313
+ "rstrip": false,
314
+ "single_word": false,
315
+ "special": true
316
+ },
317
+ "156930": {
318
+ "content": "<|reserved_token_35|>",
319
+ "lstrip": false,
320
+ "normalized": false,
321
+ "rstrip": false,
322
+ "single_word": false,
323
+ "special": true
324
+ },
325
+ "156931": {
326
+ "content": "<|reserved_token_36|>",
327
+ "lstrip": false,
328
+ "normalized": false,
329
+ "rstrip": false,
330
+ "single_word": false,
331
+ "special": true
332
+ },
333
+ "156932": {
334
+ "content": "<|reserved_token_37|>",
335
+ "lstrip": false,
336
+ "normalized": false,
337
+ "rstrip": false,
338
+ "single_word": false,
339
+ "special": true
340
+ },
341
+ "156933": {
342
+ "content": "<|reserved_token_38|>",
343
+ "lstrip": false,
344
+ "normalized": false,
345
+ "rstrip": false,
346
+ "single_word": false,
347
+ "special": true
348
+ },
349
+ "156934": {
350
+ "content": "<|reserved_token_39|>",
351
+ "lstrip": false,
352
+ "normalized": false,
353
+ "rstrip": false,
354
+ "single_word": false,
355
+ "special": true
356
+ },
357
+ "156935": {
358
+ "content": "<|reserved_token_40|>",
359
+ "lstrip": false,
360
+ "normalized": false,
361
+ "rstrip": false,
362
+ "single_word": false,
363
+ "special": true
364
+ },
365
+ "156936": {
366
+ "content": "<|reserved_token_41|>",
367
+ "lstrip": false,
368
+ "normalized": false,
369
+ "rstrip": false,
370
+ "single_word": false,
371
+ "special": true
372
+ },
373
+ "156937": {
374
+ "content": "<|reserved_token_42|>",
375
+ "lstrip": false,
376
+ "normalized": false,
377
+ "rstrip": false,
378
+ "single_word": false,
379
+ "special": true
380
+ },
381
+ "156938": {
382
+ "content": "<|reserved_token_43|>",
383
+ "lstrip": false,
384
+ "normalized": false,
385
+ "rstrip": false,
386
+ "single_word": false,
387
+ "special": true
388
+ },
389
+ "156939": {
390
+ "content": "<|reserved_token_44|>",
391
+ "lstrip": false,
392
+ "normalized": false,
393
+ "rstrip": false,
394
+ "single_word": false,
395
+ "special": true
396
+ },
397
+ "156940": {
398
+ "content": "<|reserved_token_45|>",
399
+ "lstrip": false,
400
+ "normalized": false,
401
+ "rstrip": false,
402
+ "single_word": false,
403
+ "special": true
404
+ },
405
+ "156941": {
406
+ "content": "<|reserved_token_46|>",
407
+ "lstrip": false,
408
+ "normalized": false,
409
+ "rstrip": false,
410
+ "single_word": false,
411
+ "special": true
412
+ },
413
+ "156942": {
414
+ "content": "<|reserved_token_47|>",
415
+ "lstrip": false,
416
+ "normalized": false,
417
+ "rstrip": false,
418
+ "single_word": false,
419
+ "special": true
420
+ },
421
+ "156943": {
422
+ "content": "<|reserved_token_48|>",
423
+ "lstrip": false,
424
+ "normalized": false,
425
+ "rstrip": false,
426
+ "single_word": false,
427
+ "special": true
428
+ },
429
+ "156944": {
430
+ "content": "<|reserved_token_49|>",
431
+ "lstrip": false,
432
+ "normalized": false,
433
+ "rstrip": false,
434
+ "single_word": false,
435
+ "special": true
436
+ },
437
+ "156945": {
438
+ "content": "<|reserved_token_50|>",
439
+ "lstrip": false,
440
+ "normalized": false,
441
+ "rstrip": false,
442
+ "single_word": false,
443
+ "special": true
444
+ },
445
+ "156946": {
446
+ "content": "<|reserved_token_51|>",
447
+ "lstrip": false,
448
+ "normalized": false,
449
+ "rstrip": false,
450
+ "single_word": false,
451
+ "special": true
452
+ },
453
+ "156947": {
454
+ "content": "<|reserved_token_52|>",
455
+ "lstrip": false,
456
+ "normalized": false,
457
+ "rstrip": false,
458
+ "single_word": false,
459
+ "special": true
460
+ },
461
+ "156948": {
462
+ "content": "<|reserved_token_53|>",
463
+ "lstrip": false,
464
+ "normalized": false,
465
+ "rstrip": false,
466
+ "single_word": false,
467
+ "special": true
468
+ },
469
+ "156949": {
470
+ "content": "<|reserved_token_54|>",
471
+ "lstrip": false,
472
+ "normalized": false,
473
+ "rstrip": false,
474
+ "single_word": false,
475
+ "special": true
476
+ },
477
+ "156950": {
478
+ "content": "<|reserved_token_55|>",
479
+ "lstrip": false,
480
+ "normalized": false,
481
+ "rstrip": false,
482
+ "single_word": false,
483
+ "special": true
484
+ },
485
+ "156951": {
486
+ "content": "<|reserved_token_56|>",
487
+ "lstrip": false,
488
+ "normalized": false,
489
+ "rstrip": false,
490
+ "single_word": false,
491
+ "special": true
492
+ },
493
+ "156952": {
494
+ "content": "<|reserved_token_57|>",
495
+ "lstrip": false,
496
+ "normalized": false,
497
+ "rstrip": false,
498
+ "single_word": false,
499
+ "special": true
500
+ },
501
+ "156953": {
502
+ "content": "<|reserved_token_58|>",
503
+ "lstrip": false,
504
+ "normalized": false,
505
+ "rstrip": false,
506
+ "single_word": false,
507
+ "special": true
508
+ },
509
+ "156954": {
510
+ "content": "<|reserved_token_59|>",
511
+ "lstrip": false,
512
+ "normalized": false,
513
+ "rstrip": false,
514
+ "single_word": false,
515
+ "special": true
516
+ },
517
+ "156955": {
518
+ "content": "<|reserved_token_60|>",
519
+ "lstrip": false,
520
+ "normalized": false,
521
+ "rstrip": false,
522
+ "single_word": false,
523
+ "special": true
524
+ },
525
+ "156956": {
526
+ "content": "<|reserved_token_61|>",
527
+ "lstrip": false,
528
+ "normalized": false,
529
+ "rstrip": false,
530
+ "single_word": false,
531
+ "special": true
532
+ },
533
+ "156957": {
534
+ "content": "<|reserved_token_62|>",
535
+ "lstrip": false,
536
+ "normalized": false,
537
+ "rstrip": false,
538
+ "single_word": false,
539
+ "special": true
540
+ },
541
+ "156958": {
542
+ "content": "<|reserved_token_63|>",
543
+ "lstrip": false,
544
+ "normalized": false,
545
+ "rstrip": false,
546
+ "single_word": false,
547
+ "special": true
548
+ },
549
+ "156959": {
550
+ "content": "<|reserved_token_64|>",
551
+ "lstrip": false,
552
+ "normalized": false,
553
+ "rstrip": false,
554
+ "single_word": false,
555
+ "special": true
556
+ },
557
+ "156960": {
558
+ "content": "<|reserved_token_65|>",
559
+ "lstrip": false,
560
+ "normalized": false,
561
+ "rstrip": false,
562
+ "single_word": false,
563
+ "special": true
564
+ },
565
+ "156961": {
566
+ "content": "<|reserved_token_66|>",
567
+ "lstrip": false,
568
+ "normalized": false,
569
+ "rstrip": false,
570
+ "single_word": false,
571
+ "special": true
572
+ },
573
+ "156962": {
574
+ "content": "<|reserved_token_67|>",
575
+ "lstrip": false,
576
+ "normalized": false,
577
+ "rstrip": false,
578
+ "single_word": false,
579
+ "special": true
580
+ },
581
+ "156963": {
582
+ "content": "<|reserved_token_68|>",
583
+ "lstrip": false,
584
+ "normalized": false,
585
+ "rstrip": false,
586
+ "single_word": false,
587
+ "special": true
588
+ },
589
+ "156964": {
590
+ "content": "<|reserved_token_69|>",
591
+ "lstrip": false,
592
+ "normalized": false,
593
+ "rstrip": false,
594
+ "single_word": false,
595
+ "special": true
596
+ },
597
+ "156965": {
598
+ "content": "<|reserved_token_70|>",
599
+ "lstrip": false,
600
+ "normalized": false,
601
+ "rstrip": false,
602
+ "single_word": false,
603
+ "special": true
604
+ },
605
+ "156966": {
606
+ "content": "<|reserved_token_71|>",
607
+ "lstrip": false,
608
+ "normalized": false,
609
+ "rstrip": false,
610
+ "single_word": false,
611
+ "special": true
612
+ },
613
+ "156967": {
614
+ "content": "<|reserved_token_72|>",
615
+ "lstrip": false,
616
+ "normalized": false,
617
+ "rstrip": false,
618
+ "single_word": false,
619
+ "special": true
620
+ },
621
+ "156968": {
622
+ "content": "<|reserved_token_73|>",
623
+ "lstrip": false,
624
+ "normalized": false,
625
+ "rstrip": false,
626
+ "single_word": false,
627
+ "special": true
628
+ },
629
+ "156969": {
630
+ "content": "<|reserved_token_74|>",
631
+ "lstrip": false,
632
+ "normalized": false,
633
+ "rstrip": false,
634
+ "single_word": false,
635
+ "special": true
636
+ },
637
+ "156970": {
638
+ "content": "<|reserved_token_75|>",
639
+ "lstrip": false,
640
+ "normalized": false,
641
+ "rstrip": false,
642
+ "single_word": false,
643
+ "special": true
644
+ },
645
+ "156971": {
646
+ "content": "<|reserved_token_76|>",
647
+ "lstrip": false,
648
+ "normalized": false,
649
+ "rstrip": false,
650
+ "single_word": false,
651
+ "special": true
652
+ },
653
+ "156972": {
654
+ "content": "<|reserved_token_77|>",
655
+ "lstrip": false,
656
+ "normalized": false,
657
+ "rstrip": false,
658
+ "single_word": false,
659
+ "special": true
660
+ },
661
+ "156973": {
662
+ "content": "<|reserved_token_78|>",
663
+ "lstrip": false,
664
+ "normalized": false,
665
+ "rstrip": false,
666
+ "single_word": false,
667
+ "special": true
668
+ },
669
+ "156974": {
670
+ "content": "<|reserved_token_79|>",
671
+ "lstrip": false,
672
+ "normalized": false,
673
+ "rstrip": false,
674
+ "single_word": false,
675
+ "special": true
676
+ },
677
+ "156975": {
678
+ "content": "<|reserved_token_80|>",
679
+ "lstrip": false,
680
+ "normalized": false,
681
+ "rstrip": false,
682
+ "single_word": false,
683
+ "special": true
684
+ },
685
+ "156976": {
686
+ "content": "<|reserved_token_81|>",
687
+ "lstrip": false,
688
+ "normalized": false,
689
+ "rstrip": false,
690
+ "single_word": false,
691
+ "special": true
692
+ },
693
+ "156977": {
694
+ "content": "<|reserved_token_82|>",
695
+ "lstrip": false,
696
+ "normalized": false,
697
+ "rstrip": false,
698
+ "single_word": false,
699
+ "special": true
700
+ },
701
+ "156978": {
702
+ "content": "<|reserved_token_83|>",
703
+ "lstrip": false,
704
+ "normalized": false,
705
+ "rstrip": false,
706
+ "single_word": false,
707
+ "special": true
708
+ },
709
+ "156979": {
710
+ "content": "<|reserved_token_84|>",
711
+ "lstrip": false,
712
+ "normalized": false,
713
+ "rstrip": false,
714
+ "single_word": false,
715
+ "special": true
716
+ },
717
+ "156980": {
718
+ "content": "<|reserved_token_85|>",
719
+ "lstrip": false,
720
+ "normalized": false,
721
+ "rstrip": false,
722
+ "single_word": false,
723
+ "special": true
724
+ },
725
+ "156981": {
726
+ "content": "<|reserved_token_86|>",
727
+ "lstrip": false,
728
+ "normalized": false,
729
+ "rstrip": false,
730
+ "single_word": false,
731
+ "special": true
732
+ },
733
+ "156982": {
734
+ "content": "<|reserved_token_87|>",
735
+ "lstrip": false,
736
+ "normalized": false,
737
+ "rstrip": false,
738
+ "single_word": false,
739
+ "special": true
740
+ },
741
+ "156983": {
742
+ "content": "<|reserved_token_88|>",
743
+ "lstrip": false,
744
+ "normalized": false,
745
+ "rstrip": false,
746
+ "single_word": false,
747
+ "special": true
748
+ },
749
+ "156984": {
750
+ "content": "<|reserved_token_89|>",
751
+ "lstrip": false,
752
+ "normalized": false,
753
+ "rstrip": false,
754
+ "single_word": false,
755
+ "special": true
756
+ },
757
+ "156985": {
758
+ "content": "<|reserved_token_90|>",
759
+ "lstrip": false,
760
+ "normalized": false,
761
+ "rstrip": false,
762
+ "single_word": false,
763
+ "special": true
764
+ },
765
+ "156986": {
766
+ "content": "<|reserved_token_91|>",
767
+ "lstrip": false,
768
+ "normalized": false,
769
+ "rstrip": false,
770
+ "single_word": false,
771
+ "special": true
772
+ },
773
+ "156987": {
774
+ "content": "<|reserved_token_92|>",
775
+ "lstrip": false,
776
+ "normalized": false,
777
+ "rstrip": false,
778
+ "single_word": false,
779
+ "special": true
780
+ },
781
+ "156988": {
782
+ "content": "<|reserved_token_93|>",
783
+ "lstrip": false,
784
+ "normalized": false,
785
+ "rstrip": false,
786
+ "single_word": false,
787
+ "special": true
788
+ },
789
+ "156989": {
790
+ "content": "<|reserved_token_94|>",
791
+ "lstrip": false,
792
+ "normalized": false,
793
+ "rstrip": false,
794
+ "single_word": false,
795
+ "special": true
796
+ },
797
+ "156990": {
798
+ "content": "<|reserved_token_95|>",
799
+ "lstrip": false,
800
+ "normalized": false,
801
+ "rstrip": false,
802
+ "single_word": false,
803
+ "special": true
804
+ },
805
+ "156991": {
806
+ "content": "<|reserved_token_96|>",
807
+ "lstrip": false,
808
+ "normalized": false,
809
+ "rstrip": false,
810
+ "single_word": false,
811
+ "special": true
812
+ },
813
+ "156992": {
814
+ "content": "<|reserved_token_97|>",
815
+ "lstrip": false,
816
+ "normalized": false,
817
+ "rstrip": false,
818
+ "single_word": false,
819
+ "special": true
820
+ },
821
+ "156993": {
822
+ "content": "<|reserved_token_98|>",
823
+ "lstrip": false,
824
+ "normalized": false,
825
+ "rstrip": false,
826
+ "single_word": false,
827
+ "special": true
828
+ },
829
+ "156994": {
830
+ "content": "<|reserved_token_99|>",
831
+ "lstrip": false,
832
+ "normalized": false,
833
+ "rstrip": false,
834
+ "single_word": false,
835
+ "special": true
836
+ },
837
+ "156995": {
838
+ "content": "<|reserved_token_100|>",
839
+ "lstrip": false,
840
+ "normalized": false,
841
+ "rstrip": false,
842
+ "single_word": false,
843
+ "special": true
844
+ },
845
+ "156996": {
846
+ "content": "<|reserved_token_101|>",
847
+ "lstrip": false,
848
+ "normalized": false,
849
+ "rstrip": false,
850
+ "single_word": false,
851
+ "special": true
852
+ },
853
+ "156997": {
854
+ "content": "<|reserved_token_102|>",
855
+ "lstrip": false,
856
+ "normalized": false,
857
+ "rstrip": false,
858
+ "single_word": false,
859
+ "special": true
860
+ },
861
+ "156998": {
862
+ "content": "<|reserved_token_103|>",
863
+ "lstrip": false,
864
+ "normalized": false,
865
+ "rstrip": false,
866
+ "single_word": false,
867
+ "special": true
868
+ },
869
+ "156999": {
870
+ "content": "<|reserved_token_104|>",
871
+ "lstrip": false,
872
+ "normalized": false,
873
+ "rstrip": false,
874
+ "single_word": false,
875
+ "special": true
876
+ },
877
+ "157000": {
878
+ "content": "<|reserved_token_105|>",
879
+ "lstrip": false,
880
+ "normalized": false,
881
+ "rstrip": false,
882
+ "single_word": false,
883
+ "special": true
884
+ },
885
+ "157001": {
886
+ "content": "<|reserved_token_106|>",
887
+ "lstrip": false,
888
+ "normalized": false,
889
+ "rstrip": false,
890
+ "single_word": false,
891
+ "special": true
892
+ },
893
+ "157002": {
894
+ "content": "<|reserved_token_107|>",
895
+ "lstrip": false,
896
+ "normalized": false,
897
+ "rstrip": false,
898
+ "single_word": false,
899
+ "special": true
900
+ },
901
+ "157003": {
902
+ "content": "<|reserved_token_108|>",
903
+ "lstrip": false,
904
+ "normalized": false,
905
+ "rstrip": false,
906
+ "single_word": false,
907
+ "special": true
908
+ },
909
+ "157004": {
910
+ "content": "<|reserved_token_109|>",
911
+ "lstrip": false,
912
+ "normalized": false,
913
+ "rstrip": false,
914
+ "single_word": false,
915
+ "special": true
916
+ },
917
+ "157005": {
918
+ "content": "<|reserved_token_110|>",
919
+ "lstrip": false,
920
+ "normalized": false,
921
+ "rstrip": false,
922
+ "single_word": false,
923
+ "special": true
924
+ },
925
+ "157006": {
926
+ "content": "<|reserved_token_111|>",
927
+ "lstrip": false,
928
+ "normalized": false,
929
+ "rstrip": false,
930
+ "single_word": false,
931
+ "special": true
932
+ },
933
+ "157007": {
934
+ "content": "<|reserved_token_112|>",
935
+ "lstrip": false,
936
+ "normalized": false,
937
+ "rstrip": false,
938
+ "single_word": false,
939
+ "special": true
940
+ },
941
+ "157008": {
942
+ "content": "<|reserved_token_113|>",
943
+ "lstrip": false,
944
+ "normalized": false,
945
+ "rstrip": false,
946
+ "single_word": false,
947
+ "special": true
948
+ },
949
+ "157009": {
950
+ "content": "<|reserved_token_114|>",
951
+ "lstrip": false,
952
+ "normalized": false,
953
+ "rstrip": false,
954
+ "single_word": false,
955
+ "special": true
956
+ },
957
+ "157010": {
958
+ "content": "<|reserved_token_115|>",
959
+ "lstrip": false,
960
+ "normalized": false,
961
+ "rstrip": false,
962
+ "single_word": false,
963
+ "special": true
964
+ },
965
+ "157011": {
966
+ "content": "<|reserved_token_116|>",
967
+ "lstrip": false,
968
+ "normalized": false,
969
+ "rstrip": false,
970
+ "single_word": false,
971
+ "special": true
972
+ },
973
+ "157012": {
974
+ "content": "<|reserved_token_117|>",
975
+ "lstrip": false,
976
+ "normalized": false,
977
+ "rstrip": false,
978
+ "single_word": false,
979
+ "special": true
980
+ },
981
+ "157013": {
982
+ "content": "<|reserved_token_118|>",
983
+ "lstrip": false,
984
+ "normalized": false,
985
+ "rstrip": false,
986
+ "single_word": false,
987
+ "special": true
988
+ },
989
+ "157014": {
990
+ "content": "<|reserved_token_119|>",
991
+ "lstrip": false,
992
+ "normalized": false,
993
+ "rstrip": false,
994
+ "single_word": false,
995
+ "special": true
996
+ },
997
+ "157015": {
998
+ "content": "<|reserved_token_120|>",
999
+ "lstrip": false,
1000
+ "normalized": false,
1001
+ "rstrip": false,
1002
+ "single_word": false,
1003
+ "special": true
1004
+ },
1005
+ "157016": {
1006
+ "content": "<|reserved_token_121|>",
1007
+ "lstrip": false,
1008
+ "normalized": false,
1009
+ "rstrip": false,
1010
+ "single_word": false,
1011
+ "special": true
1012
+ },
1013
+ "157017": {
1014
+ "content": "<|reserved_token_122|>",
1015
+ "lstrip": false,
1016
+ "normalized": false,
1017
+ "rstrip": false,
1018
+ "single_word": false,
1019
+ "special": true
1020
+ },
1021
+ "157018": {
1022
+ "content": "<|reserved_token_123|>",
1023
+ "lstrip": false,
1024
+ "normalized": false,
1025
+ "rstrip": false,
1026
+ "single_word": false,
1027
+ "special": true
1028
+ },
1029
+ "157019": {
1030
+ "content": "<|reserved_token_124|>",
1031
+ "lstrip": false,
1032
+ "normalized": false,
1033
+ "rstrip": false,
1034
+ "single_word": false,
1035
+ "special": true
1036
+ },
1037
+ "157020": {
1038
+ "content": "<|reserved_token_125|>",
1039
+ "lstrip": false,
1040
+ "normalized": false,
1041
+ "rstrip": false,
1042
+ "single_word": false,
1043
+ "special": true
1044
+ },
1045
+ "157021": {
1046
+ "content": "<|reserved_token_126|>",
1047
+ "lstrip": false,
1048
+ "normalized": false,
1049
+ "rstrip": false,
1050
+ "single_word": false,
1051
+ "special": true
1052
+ },
1053
+ "157022": {
1054
+ "content": "<|reserved_token_127|>",
1055
+ "lstrip": false,
1056
+ "normalized": false,
1057
+ "rstrip": false,
1058
+ "single_word": false,
1059
+ "special": true
1060
+ },
1061
+ "157023": {
1062
+ "content": "<|reserved_token_128|>",
1063
+ "lstrip": false,
1064
+ "normalized": false,
1065
+ "rstrip": false,
1066
+ "single_word": false,
1067
+ "special": true
1068
+ },
1069
+ "157024": {
1070
+ "content": "<|reserved_token_129|>",
1071
+ "lstrip": false,
1072
+ "normalized": false,
1073
+ "rstrip": false,
1074
+ "single_word": false,
1075
+ "special": true
1076
+ },
1077
+ "157025": {
1078
+ "content": "<|reserved_token_130|>",
1079
+ "lstrip": false,
1080
+ "normalized": false,
1081
+ "rstrip": false,
1082
+ "single_word": false,
1083
+ "special": true
1084
+ },
1085
+ "157026": {
1086
+ "content": "<|reserved_token_131|>",
1087
+ "lstrip": false,
1088
+ "normalized": false,
1089
+ "rstrip": false,
1090
+ "single_word": false,
1091
+ "special": true
1092
+ },
1093
+ "157027": {
1094
+ "content": "<|reserved_token_132|>",
1095
+ "lstrip": false,
1096
+ "normalized": false,
1097
+ "rstrip": false,
1098
+ "single_word": false,
1099
+ "special": true
1100
+ },
1101
+ "157028": {
1102
+ "content": "<|reserved_token_133|>",
1103
+ "lstrip": false,
1104
+ "normalized": false,
1105
+ "rstrip": false,
1106
+ "single_word": false,
1107
+ "special": true
1108
+ },
1109
+ "157029": {
1110
+ "content": "<|reserved_token_134|>",
1111
+ "lstrip": false,
1112
+ "normalized": false,
1113
+ "rstrip": false,
1114
+ "single_word": false,
1115
+ "special": true
1116
+ },
1117
+ "157030": {
1118
+ "content": "<|reserved_token_135|>",
1119
+ "lstrip": false,
1120
+ "normalized": false,
1121
+ "rstrip": false,
1122
+ "single_word": false,
1123
+ "special": true
1124
+ },
1125
+ "157031": {
1126
+ "content": "<|reserved_token_136|>",
1127
+ "lstrip": false,
1128
+ "normalized": false,
1129
+ "rstrip": false,
1130
+ "single_word": false,
1131
+ "special": true
1132
+ },
1133
+ "157032": {
1134
+ "content": "<|reserved_token_137|>",
1135
+ "lstrip": false,
1136
+ "normalized": false,
1137
+ "rstrip": false,
1138
+ "single_word": false,
1139
+ "special": true
1140
+ },
1141
+ "157033": {
1142
+ "content": "<|reserved_token_138|>",
1143
+ "lstrip": false,
1144
+ "normalized": false,
1145
+ "rstrip": false,
1146
+ "single_word": false,
1147
+ "special": true
1148
+ },
1149
+ "157034": {
1150
+ "content": "<|reserved_token_139|>",
1151
+ "lstrip": false,
1152
+ "normalized": false,
1153
+ "rstrip": false,
1154
+ "single_word": false,
1155
+ "special": true
1156
+ },
1157
+ "157035": {
1158
+ "content": "<|reserved_token_140|>",
1159
+ "lstrip": false,
1160
+ "normalized": false,
1161
+ "rstrip": false,
1162
+ "single_word": false,
1163
+ "special": true
1164
+ },
1165
+ "157036": {
1166
+ "content": "<|reserved_token_141|>",
1167
+ "lstrip": false,
1168
+ "normalized": false,
1169
+ "rstrip": false,
1170
+ "single_word": false,
1171
+ "special": true
1172
+ },
1173
+ "157037": {
1174
+ "content": "<|reserved_token_142|>",
1175
+ "lstrip": false,
1176
+ "normalized": false,
1177
+ "rstrip": false,
1178
+ "single_word": false,
1179
+ "special": true
1180
+ },
1181
+ "157038": {
1182
+ "content": "<|reserved_token_143|>",
1183
+ "lstrip": false,
1184
+ "normalized": false,
1185
+ "rstrip": false,
1186
+ "single_word": false,
1187
+ "special": true
1188
+ },
1189
+ "157039": {
1190
+ "content": "<|reserved_token_144|>",
1191
+ "lstrip": false,
1192
+ "normalized": false,
1193
+ "rstrip": false,
1194
+ "single_word": false,
1195
+ "special": true
1196
+ },
1197
+ "157040": {
1198
+ "content": "<|reserved_token_145|>",
1199
+ "lstrip": false,
1200
+ "normalized": false,
1201
+ "rstrip": false,
1202
+ "single_word": false,
1203
+ "special": true
1204
+ },
1205
+ "157041": {
1206
+ "content": "<|reserved_token_146|>",
1207
+ "lstrip": false,
1208
+ "normalized": false,
1209
+ "rstrip": false,
1210
+ "single_word": false,
1211
+ "special": true
1212
+ },
1213
+ "157042": {
1214
+ "content": "<|reserved_token_147|>",
1215
+ "lstrip": false,
1216
+ "normalized": false,
1217
+ "rstrip": false,
1218
+ "single_word": false,
1219
+ "special": true
1220
+ },
1221
+ "157043": {
1222
+ "content": "<|reserved_token_148|>",
1223
+ "lstrip": false,
1224
+ "normalized": false,
1225
+ "rstrip": false,
1226
+ "single_word": false,
1227
+ "special": true
1228
+ },
1229
+ "157044": {
1230
+ "content": "<|reserved_token_149|>",
1231
+ "lstrip": false,
1232
+ "normalized": false,
1233
+ "rstrip": false,
1234
+ "single_word": false,
1235
+ "special": true
1236
+ },
1237
+ "157045": {
1238
+ "content": "<|reserved_token_150|>",
1239
+ "lstrip": false,
1240
+ "normalized": false,
1241
+ "rstrip": false,
1242
+ "single_word": false,
1243
+ "special": true
1244
+ },
1245
+ "157046": {
1246
+ "content": "<|reserved_token_151|>",
1247
+ "lstrip": false,
1248
+ "normalized": false,
1249
+ "rstrip": false,
1250
+ "single_word": false,
1251
+ "special": true
1252
+ },
1253
+ "157047": {
1254
+ "content": "<|reserved_token_152|>",
1255
+ "lstrip": false,
1256
+ "normalized": false,
1257
+ "rstrip": false,
1258
+ "single_word": false,
1259
+ "special": true
1260
+ },
1261
+ "157048": {
1262
+ "content": "<|reserved_token_153|>",
1263
+ "lstrip": false,
1264
+ "normalized": false,
1265
+ "rstrip": false,
1266
+ "single_word": false,
1267
+ "special": true
1268
+ },
1269
+ "157049": {
1270
+ "content": "<|reserved_token_154|>",
1271
+ "lstrip": false,
1272
+ "normalized": false,
1273
+ "rstrip": false,
1274
+ "single_word": false,
1275
+ "special": true
1276
+ },
1277
+ "157050": {
1278
+ "content": "<|reserved_token_155|>",
1279
+ "lstrip": false,
1280
+ "normalized": false,
1281
+ "rstrip": false,
1282
+ "single_word": false,
1283
+ "special": true
1284
+ },
1285
+ "157051": {
1286
+ "content": "<|reserved_token_156|>",
1287
+ "lstrip": false,
1288
+ "normalized": false,
1289
+ "rstrip": false,
1290
+ "single_word": false,
1291
+ "special": true
1292
+ },
1293
+ "157052": {
1294
+ "content": "<|reserved_token_157|>",
1295
+ "lstrip": false,
1296
+ "normalized": false,
1297
+ "rstrip": false,
1298
+ "single_word": false,
1299
+ "special": true
1300
+ },
1301
+ "157053": {
1302
+ "content": "<|reserved_token_158|>",
1303
+ "lstrip": false,
1304
+ "normalized": false,
1305
+ "rstrip": false,
1306
+ "single_word": false,
1307
+ "special": true
1308
+ },
1309
+ "157054": {
1310
+ "content": "<|reserved_token_159|>",
1311
+ "lstrip": false,
1312
+ "normalized": false,
1313
+ "rstrip": false,
1314
+ "single_word": false,
1315
+ "special": true
1316
+ },
1317
+ "157055": {
1318
+ "content": "<|reserved_token_160|>",
1319
+ "lstrip": false,
1320
+ "normalized": false,
1321
+ "rstrip": false,
1322
+ "single_word": false,
1323
+ "special": true
1324
+ },
1325
+ "157056": {
1326
+ "content": "<|reserved_token_161|>",
1327
+ "lstrip": false,
1328
+ "normalized": false,
1329
+ "rstrip": false,
1330
+ "single_word": false,
1331
+ "special": true
1332
+ },
1333
+ "157057": {
1334
+ "content": "<|reserved_token_162|>",
1335
+ "lstrip": false,
1336
+ "normalized": false,
1337
+ "rstrip": false,
1338
+ "single_word": false,
1339
+ "special": true
1340
+ },
1341
+ "157058": {
1342
+ "content": "<|reserved_token_163|>",
1343
+ "lstrip": false,
1344
+ "normalized": false,
1345
+ "rstrip": false,
1346
+ "single_word": false,
1347
+ "special": true
1348
+ },
1349
+ "157059": {
1350
+ "content": "<|reserved_token_164|>",
1351
+ "lstrip": false,
1352
+ "normalized": false,
1353
+ "rstrip": false,
1354
+ "single_word": false,
1355
+ "special": true
1356
+ },
1357
+ "157060": {
1358
+ "content": "<|reserved_token_165|>",
1359
+ "lstrip": false,
1360
+ "normalized": false,
1361
+ "rstrip": false,
1362
+ "single_word": false,
1363
+ "special": true
1364
+ },
1365
+ "157061": {
1366
+ "content": "<|reserved_token_166|>",
1367
+ "lstrip": false,
1368
+ "normalized": false,
1369
+ "rstrip": false,
1370
+ "single_word": false,
1371
+ "special": true
1372
+ },
1373
+ "157062": {
1374
+ "content": "<|reserved_token_167|>",
1375
+ "lstrip": false,
1376
+ "normalized": false,
1377
+ "rstrip": false,
1378
+ "single_word": false,
1379
+ "special": true
1380
+ },
1381
+ "157063": {
1382
+ "content": "<|reserved_token_168|>",
1383
+ "lstrip": false,
1384
+ "normalized": false,
1385
+ "rstrip": false,
1386
+ "single_word": false,
1387
+ "special": true
1388
+ },
1389
+ "157064": {
1390
+ "content": "<|reserved_token_169|>",
1391
+ "lstrip": false,
1392
+ "normalized": false,
1393
+ "rstrip": false,
1394
+ "single_word": false,
1395
+ "special": true
1396
+ },
1397
+ "157065": {
1398
+ "content": "<|reserved_token_170|>",
1399
+ "lstrip": false,
1400
+ "normalized": false,
1401
+ "rstrip": false,
1402
+ "single_word": false,
1403
+ "special": true
1404
+ },
1405
+ "157066": {
1406
+ "content": "<|reserved_token_171|>",
1407
+ "lstrip": false,
1408
+ "normalized": false,
1409
+ "rstrip": false,
1410
+ "single_word": false,
1411
+ "special": true
1412
+ },
1413
+ "157067": {
1414
+ "content": "<|reserved_token_172|>",
1415
+ "lstrip": false,
1416
+ "normalized": false,
1417
+ "rstrip": false,
1418
+ "single_word": false,
1419
+ "special": true
1420
+ },
1421
+ "157068": {
1422
+ "content": "<|reserved_token_173|>",
1423
+ "lstrip": false,
1424
+ "normalized": false,
1425
+ "rstrip": false,
1426
+ "single_word": false,
1427
+ "special": true
1428
+ },
1429
+ "157069": {
1430
+ "content": "<|reserved_token_174|>",
1431
+ "lstrip": false,
1432
+ "normalized": false,
1433
+ "rstrip": false,
1434
+ "single_word": false,
1435
+ "special": true
1436
+ },
1437
+ "157070": {
1438
+ "content": "<|reserved_token_175|>",
1439
+ "lstrip": false,
1440
+ "normalized": false,
1441
+ "rstrip": false,
1442
+ "single_word": false,
1443
+ "special": true
1444
+ },
1445
+ "157071": {
1446
+ "content": "<|reserved_token_176|>",
1447
+ "lstrip": false,
1448
+ "normalized": false,
1449
+ "rstrip": false,
1450
+ "single_word": false,
1451
+ "special": true
1452
+ },
1453
+ "157072": {
1454
+ "content": "<|reserved_token_177|>",
1455
+ "lstrip": false,
1456
+ "normalized": false,
1457
+ "rstrip": false,
1458
+ "single_word": false,
1459
+ "special": true
1460
+ },
1461
+ "157073": {
1462
+ "content": "<|reserved_token_178|>",
1463
+ "lstrip": false,
1464
+ "normalized": false,
1465
+ "rstrip": false,
1466
+ "single_word": false,
1467
+ "special": true
1468
+ },
1469
+ "157074": {
1470
+ "content": "<|reserved_token_179|>",
1471
+ "lstrip": false,
1472
+ "normalized": false,
1473
+ "rstrip": false,
1474
+ "single_word": false,
1475
+ "special": true
1476
+ },
1477
+ "157075": {
1478
+ "content": "<|reserved_token_180|>",
1479
+ "lstrip": false,
1480
+ "normalized": false,
1481
+ "rstrip": false,
1482
+ "single_word": false,
1483
+ "special": true
1484
+ },
1485
+ "157076": {
1486
+ "content": "<|reserved_token_181|>",
1487
+ "lstrip": false,
1488
+ "normalized": false,
1489
+ "rstrip": false,
1490
+ "single_word": false,
1491
+ "special": true
1492
+ },
1493
+ "157077": {
1494
+ "content": "<|reserved_token_182|>",
1495
+ "lstrip": false,
1496
+ "normalized": false,
1497
+ "rstrip": false,
1498
+ "single_word": false,
1499
+ "special": true
1500
+ },
1501
+ "157078": {
1502
+ "content": "<|reserved_token_183|>",
1503
+ "lstrip": false,
1504
+ "normalized": false,
1505
+ "rstrip": false,
1506
+ "single_word": false,
1507
+ "special": true
1508
+ },
1509
+ "157079": {
1510
+ "content": "<|reserved_token_184|>",
1511
+ "lstrip": false,
1512
+ "normalized": false,
1513
+ "rstrip": false,
1514
+ "single_word": false,
1515
+ "special": true
1516
+ },
1517
+ "157080": {
1518
+ "content": "<|reserved_token_185|>",
1519
+ "lstrip": false,
1520
+ "normalized": false,
1521
+ "rstrip": false,
1522
+ "single_word": false,
1523
+ "special": true
1524
+ },
1525
+ "157081": {
1526
+ "content": "<|reserved_token_186|>",
1527
+ "lstrip": false,
1528
+ "normalized": false,
1529
+ "rstrip": false,
1530
+ "single_word": false,
1531
+ "special": true
1532
+ },
1533
+ "157082": {
1534
+ "content": "<|reserved_token_187|>",
1535
+ "lstrip": false,
1536
+ "normalized": false,
1537
+ "rstrip": false,
1538
+ "single_word": false,
1539
+ "special": true
1540
+ },
1541
+ "157083": {
1542
+ "content": "<|reserved_token_188|>",
1543
+ "lstrip": false,
1544
+ "normalized": false,
1545
+ "rstrip": false,
1546
+ "single_word": false,
1547
+ "special": true
1548
+ },
1549
+ "157084": {
1550
+ "content": "<|reserved_token_189|>",
1551
+ "lstrip": false,
1552
+ "normalized": false,
1553
+ "rstrip": false,
1554
+ "single_word": false,
1555
+ "special": true
1556
+ },
1557
+ "157085": {
1558
+ "content": "<|reserved_token_190|>",
1559
+ "lstrip": false,
1560
+ "normalized": false,
1561
+ "rstrip": false,
1562
+ "single_word": false,
1563
+ "special": true
1564
+ },
1565
+ "157086": {
1566
+ "content": "<|reserved_token_191|>",
1567
+ "lstrip": false,
1568
+ "normalized": false,
1569
+ "rstrip": false,
1570
+ "single_word": false,
1571
+ "special": true
1572
+ },
1573
+ "157087": {
1574
+ "content": "<|reserved_token_192|>",
1575
+ "lstrip": false,
1576
+ "normalized": false,
1577
+ "rstrip": false,
1578
+ "single_word": false,
1579
+ "special": true
1580
+ },
1581
+ "157088": {
1582
+ "content": "<|reserved_token_193|>",
1583
+ "lstrip": false,
1584
+ "normalized": false,
1585
+ "rstrip": false,
1586
+ "single_word": false,
1587
+ "special": true
1588
+ },
1589
+ "157089": {
1590
+ "content": "<|reserved_token_194|>",
1591
+ "lstrip": false,
1592
+ "normalized": false,
1593
+ "rstrip": false,
1594
+ "single_word": false,
1595
+ "special": true
1596
+ },
1597
+ "157090": {
1598
+ "content": "<|reserved_token_195|>",
1599
+ "lstrip": false,
1600
+ "normalized": false,
1601
+ "rstrip": false,
1602
+ "single_word": false,
1603
+ "special": true
1604
+ },
1605
+ "157091": {
1606
+ "content": "<|reserved_token_196|>",
1607
+ "lstrip": false,
1608
+ "normalized": false,
1609
+ "rstrip": false,
1610
+ "single_word": false,
1611
+ "special": true
1612
+ },
1613
+ "157092": {
1614
+ "content": "<|reserved_token_197|>",
1615
+ "lstrip": false,
1616
+ "normalized": false,
1617
+ "rstrip": false,
1618
+ "single_word": false,
1619
+ "special": true
1620
+ },
1621
+ "157093": {
1622
+ "content": "<|reserved_token_198|>",
1623
+ "lstrip": false,
1624
+ "normalized": false,
1625
+ "rstrip": false,
1626
+ "single_word": false,
1627
+ "special": true
1628
+ },
1629
+ "157094": {
1630
+ "content": "<|reserved_token_199|>",
1631
+ "lstrip": false,
1632
+ "normalized": false,
1633
+ "rstrip": false,
1634
+ "single_word": false,
1635
+ "special": true
1636
+ },
1637
+ "157095": {
1638
+ "content": "<|reserved_token_200|>",
1639
+ "lstrip": false,
1640
+ "normalized": false,
1641
+ "rstrip": false,
1642
+ "single_word": false,
1643
+ "special": true
1644
+ },
1645
+ "157096": {
1646
+ "content": "<|reserved_token_201|>",
1647
+ "lstrip": false,
1648
+ "normalized": false,
1649
+ "rstrip": false,
1650
+ "single_word": false,
1651
+ "special": true
1652
+ },
1653
+ "157097": {
1654
+ "content": "<|reserved_token_202|>",
1655
+ "lstrip": false,
1656
+ "normalized": false,
1657
+ "rstrip": false,
1658
+ "single_word": false,
1659
+ "special": true
1660
+ },
1661
+ "157098": {
1662
+ "content": "<|reserved_token_203|>",
1663
+ "lstrip": false,
1664
+ "normalized": false,
1665
+ "rstrip": false,
1666
+ "single_word": false,
1667
+ "special": true
1668
+ },
1669
+ "157099": {
1670
+ "content": "<|reserved_token_204|>",
1671
+ "lstrip": false,
1672
+ "normalized": false,
1673
+ "rstrip": false,
1674
+ "single_word": false,
1675
+ "special": true
1676
+ },
1677
+ "157100": {
1678
+ "content": "<|reserved_token_205|>",
1679
+ "lstrip": false,
1680
+ "normalized": false,
1681
+ "rstrip": false,
1682
+ "single_word": false,
1683
+ "special": true
1684
+ },
1685
+ "157101": {
1686
+ "content": "<|reserved_token_206|>",
1687
+ "lstrip": false,
1688
+ "normalized": false,
1689
+ "rstrip": false,
1690
+ "single_word": false,
1691
+ "special": true
1692
+ },
1693
+ "157102": {
1694
+ "content": "<|reserved_token_207|>",
1695
+ "lstrip": false,
1696
+ "normalized": false,
1697
+ "rstrip": false,
1698
+ "single_word": false,
1699
+ "special": true
1700
+ },
1701
+ "157103": {
1702
+ "content": "<|reserved_token_208|>",
1703
+ "lstrip": false,
1704
+ "normalized": false,
1705
+ "rstrip": false,
1706
+ "single_word": false,
1707
+ "special": true
1708
+ },
1709
+ "157104": {
1710
+ "content": "<|reserved_token_209|>",
1711
+ "lstrip": false,
1712
+ "normalized": false,
1713
+ "rstrip": false,
1714
+ "single_word": false,
1715
+ "special": true
1716
+ },
1717
+ "157105": {
1718
+ "content": "<|reserved_token_210|>",
1719
+ "lstrip": false,
1720
+ "normalized": false,
1721
+ "rstrip": false,
1722
+ "single_word": false,
1723
+ "special": true
1724
+ },
1725
+ "157106": {
1726
+ "content": "<|reserved_token_211|>",
1727
+ "lstrip": false,
1728
+ "normalized": false,
1729
+ "rstrip": false,
1730
+ "single_word": false,
1731
+ "special": true
1732
+ },
1733
+ "157107": {
1734
+ "content": "<|reserved_token_212|>",
1735
+ "lstrip": false,
1736
+ "normalized": false,
1737
+ "rstrip": false,
1738
+ "single_word": false,
1739
+ "special": true
1740
+ },
1741
+ "157108": {
1742
+ "content": "<|reserved_token_213|>",
1743
+ "lstrip": false,
1744
+ "normalized": false,
1745
+ "rstrip": false,
1746
+ "single_word": false,
1747
+ "special": true
1748
+ },
1749
+ "157109": {
1750
+ "content": "<|reserved_token_214|>",
1751
+ "lstrip": false,
1752
+ "normalized": false,
1753
+ "rstrip": false,
1754
+ "single_word": false,
1755
+ "special": true
1756
+ },
1757
+ "157110": {
1758
+ "content": "<|reserved_token_215|>",
1759
+ "lstrip": false,
1760
+ "normalized": false,
1761
+ "rstrip": false,
1762
+ "single_word": false,
1763
+ "special": true
1764
+ },
1765
+ "157111": {
1766
+ "content": "<|reserved_token_216|>",
1767
+ "lstrip": false,
1768
+ "normalized": false,
1769
+ "rstrip": false,
1770
+ "single_word": false,
1771
+ "special": true
1772
+ },
1773
+ "157112": {
1774
+ "content": "<|reserved_token_217|>",
1775
+ "lstrip": false,
1776
+ "normalized": false,
1777
+ "rstrip": false,
1778
+ "single_word": false,
1779
+ "special": true
1780
+ },
1781
+ "157113": {
1782
+ "content": "<|reserved_token_218|>",
1783
+ "lstrip": false,
1784
+ "normalized": false,
1785
+ "rstrip": false,
1786
+ "single_word": false,
1787
+ "special": true
1788
+ },
1789
+ "157114": {
1790
+ "content": "<|reserved_token_219|>",
1791
+ "lstrip": false,
1792
+ "normalized": false,
1793
+ "rstrip": false,
1794
+ "single_word": false,
1795
+ "special": true
1796
+ },
1797
+ "157115": {
1798
+ "content": "<|reserved_token_220|>",
1799
+ "lstrip": false,
1800
+ "normalized": false,
1801
+ "rstrip": false,
1802
+ "single_word": false,
1803
+ "special": true
1804
+ },
1805
+ "157116": {
1806
+ "content": "<|reserved_token_221|>",
1807
+ "lstrip": false,
1808
+ "normalized": false,
1809
+ "rstrip": false,
1810
+ "single_word": false,
1811
+ "special": true
1812
+ },
1813
+ "157117": {
1814
+ "content": "<|reserved_token_222|>",
1815
+ "lstrip": false,
1816
+ "normalized": false,
1817
+ "rstrip": false,
1818
+ "single_word": false,
1819
+ "special": true
1820
+ },
1821
+ "157118": {
1822
+ "content": "<|reserved_token_223|>",
1823
+ "lstrip": false,
1824
+ "normalized": false,
1825
+ "rstrip": false,
1826
+ "single_word": false,
1827
+ "special": true
1828
+ },
1829
+ "157119": {
1830
+ "content": "<|reserved_token_224|>",
1831
+ "lstrip": false,
1832
+ "normalized": false,
1833
+ "rstrip": false,
1834
+ "single_word": false,
1835
+ "special": true
1836
+ },
1837
+ "157120": {
1838
+ "content": "<|reserved_token_225|>",
1839
+ "lstrip": false,
1840
+ "normalized": false,
1841
+ "rstrip": false,
1842
+ "single_word": false,
1843
+ "special": true
1844
+ },
1845
+ "157121": {
1846
+ "content": "<|reserved_token_226|>",
1847
+ "lstrip": false,
1848
+ "normalized": false,
1849
+ "rstrip": false,
1850
+ "single_word": false,
1851
+ "special": true
1852
+ },
1853
+ "157122": {
1854
+ "content": "<|reserved_token_227|>",
1855
+ "lstrip": false,
1856
+ "normalized": false,
1857
+ "rstrip": false,
1858
+ "single_word": false,
1859
+ "special": true
1860
+ },
1861
+ "157123": {
1862
+ "content": "<|reserved_token_228|>",
1863
+ "lstrip": false,
1864
+ "normalized": false,
1865
+ "rstrip": false,
1866
+ "single_word": false,
1867
+ "special": true
1868
+ },
1869
+ "157124": {
1870
+ "content": "<|reserved_token_229|>",
1871
+ "lstrip": false,
1872
+ "normalized": false,
1873
+ "rstrip": false,
1874
+ "single_word": false,
1875
+ "special": true
1876
+ },
1877
+ "157125": {
1878
+ "content": "<|reserved_token_230|>",
1879
+ "lstrip": false,
1880
+ "normalized": false,
1881
+ "rstrip": false,
1882
+ "single_word": false,
1883
+ "special": true
1884
+ },
1885
+ "157126": {
1886
+ "content": "<|reserved_token_231|>",
1887
+ "lstrip": false,
1888
+ "normalized": false,
1889
+ "rstrip": false,
1890
+ "single_word": false,
1891
+ "special": true
1892
+ },
1893
+ "157127": {
1894
+ "content": "<|reserved_token_232|>",
1895
+ "lstrip": false,
1896
+ "normalized": false,
1897
+ "rstrip": false,
1898
+ "single_word": false,
1899
+ "special": true
1900
+ },
1901
+ "157128": {
1902
+ "content": "<|reserved_token_233|>",
1903
+ "lstrip": false,
1904
+ "normalized": false,
1905
+ "rstrip": false,
1906
+ "single_word": false,
1907
+ "special": true
1908
+ },
1909
+ "157129": {
1910
+ "content": "<|reserved_token_234|>",
1911
+ "lstrip": false,
1912
+ "normalized": false,
1913
+ "rstrip": false,
1914
+ "single_word": false,
1915
+ "special": true
1916
+ },
1917
+ "157130": {
1918
+ "content": "<|reserved_token_235|>",
1919
+ "lstrip": false,
1920
+ "normalized": false,
1921
+ "rstrip": false,
1922
+ "single_word": false,
1923
+ "special": true
1924
+ },
1925
+ "157131": {
1926
+ "content": "<|reserved_token_236|>",
1927
+ "lstrip": false,
1928
+ "normalized": false,
1929
+ "rstrip": false,
1930
+ "single_word": false,
1931
+ "special": true
1932
+ },
1933
+ "157132": {
1934
+ "content": "<|reserved_token_237|>",
1935
+ "lstrip": false,
1936
+ "normalized": false,
1937
+ "rstrip": false,
1938
+ "single_word": false,
1939
+ "special": true
1940
+ },
1941
+ "157133": {
1942
+ "content": "<|reserved_token_238|>",
1943
+ "lstrip": false,
1944
+ "normalized": false,
1945
+ "rstrip": false,
1946
+ "single_word": false,
1947
+ "special": true
1948
+ },
1949
+ "157134": {
1950
+ "content": "<|reserved_token_239|>",
1951
+ "lstrip": false,
1952
+ "normalized": false,
1953
+ "rstrip": false,
1954
+ "single_word": false,
1955
+ "special": true
1956
+ },
1957
+ "157135": {
1958
+ "content": "<|reserved_token_240|>",
1959
+ "lstrip": false,
1960
+ "normalized": false,
1961
+ "rstrip": false,
1962
+ "single_word": false,
1963
+ "special": true
1964
+ },
1965
+ "157136": {
1966
+ "content": "<|reserved_token_241|>",
1967
+ "lstrip": false,
1968
+ "normalized": false,
1969
+ "rstrip": false,
1970
+ "single_word": false,
1971
+ "special": true
1972
+ },
1973
+ "157137": {
1974
+ "content": "<|reserved_token_242|>",
1975
+ "lstrip": false,
1976
+ "normalized": false,
1977
+ "rstrip": false,
1978
+ "single_word": false,
1979
+ "special": true
1980
+ },
1981
+ "157138": {
1982
+ "content": "<|reserved_token_243|>",
1983
+ "lstrip": false,
1984
+ "normalized": false,
1985
+ "rstrip": false,
1986
+ "single_word": false,
1987
+ "special": true
1988
+ },
1989
+ "157139": {
1990
+ "content": "<|reserved_token_244|>",
1991
+ "lstrip": false,
1992
+ "normalized": false,
1993
+ "rstrip": false,
1994
+ "single_word": false,
1995
+ "special": true
1996
+ },
1997
+ "157140": {
1998
+ "content": "<|reserved_token_245|>",
1999
+ "lstrip": false,
2000
+ "normalized": false,
2001
+ "rstrip": false,
2002
+ "single_word": false,
2003
+ "special": true
2004
+ },
2005
+ "157141": {
2006
+ "content": "<|reserved_token_246|>",
2007
+ "lstrip": false,
2008
+ "normalized": false,
2009
+ "rstrip": false,
2010
+ "single_word": false,
2011
+ "special": true
2012
+ },
2013
+ "157142": {
2014
+ "content": "<|reserved_token_247|>",
2015
+ "lstrip": false,
2016
+ "normalized": false,
2017
+ "rstrip": false,
2018
+ "single_word": false,
2019
+ "special": true
2020
+ },
2021
+ "157143": {
2022
+ "content": "<|reserved_token_248|>",
2023
+ "lstrip": false,
2024
+ "normalized": false,
2025
+ "rstrip": false,
2026
+ "single_word": false,
2027
+ "special": true
2028
+ },
2029
+ "157144": {
2030
+ "content": "<|reserved_token_249|>",
2031
+ "lstrip": false,
2032
+ "normalized": false,
2033
+ "rstrip": false,
2034
+ "single_word": false,
2035
+ "special": true
2036
+ },
2037
+ "157145": {
2038
+ "content": "<|reserved_token_250|>",
2039
+ "lstrip": false,
2040
+ "normalized": false,
2041
+ "rstrip": false,
2042
+ "single_word": false,
2043
+ "special": true
2044
+ },
2045
+ "157146": {
2046
+ "content": "<|reserved_token_251|>",
2047
+ "lstrip": false,
2048
+ "normalized": false,
2049
+ "rstrip": false,
2050
+ "single_word": false,
2051
+ "special": true
2052
+ },
2053
+ "157147": {
2054
+ "content": "<|reserved_token_252|>",
2055
+ "lstrip": false,
2056
+ "normalized": false,
2057
+ "rstrip": false,
2058
+ "single_word": false,
2059
+ "special": true
2060
+ },
2061
+ "157148": {
2062
+ "content": "<|reserved_token_253|>",
2063
+ "lstrip": false,
2064
+ "normalized": false,
2065
+ "rstrip": false,
2066
+ "single_word": false,
2067
+ "special": true
2068
+ },
2069
+ "157149": {
2070
+ "content": "<|reserved_token_254|>",
2071
+ "lstrip": false,
2072
+ "normalized": false,
2073
+ "rstrip": false,
2074
+ "single_word": false,
2075
+ "special": true
2076
+ },
2077
+ "157150": {
2078
+ "content": "<|reserved_token_255|>",
2079
+ "lstrip": false,
2080
+ "normalized": false,
2081
+ "rstrip": false,
2082
+ "single_word": false,
2083
+ "special": true
2084
+ },
2085
+ "157151": {
2086
+ "content": "<role>",
2087
+ "lstrip": false,
2088
+ "normalized": false,
2089
+ "rstrip": false,
2090
+ "single_word": false,
2091
+ "special": true
2092
+ },
2093
+ "157152": {
2094
+ "content": "</role>",
2095
+ "lstrip": false,
2096
+ "normalized": false,
2097
+ "rstrip": false,
2098
+ "single_word": false,
2099
+ "special": true
2100
+ }
2101
+ },
2102
+ "bos_token": "<|startoftext|>",
2103
+ "clean_up_tokenization_spaces": false,
2104
+ "cls_token": "[CLS]",
2105
+ "eos_token": "<|endoftext|>",
2106
+ "extra_special_tokens": {},
2107
+ "fast_tokenizer": true,
2108
+ "gmask_token": "[gMASK]",
2109
+ "mask_token": "<|mask|>",
2110
+ "merges_file": null,
2111
+ "model_max_length": 8192,
2112
+ "pad_token": "<|endoftext|>",
2113
+ "tokenizer_class": "PreTrainedTokenizerFast",
2114
+ "trust_remote_code": true
2115
+ }