--- base_model: HPAI-BSC/Qwen2.5-Aloe-Beta-7B datasets: - HPAI-BSC/Aloe-Beta-General-Collection - HPAI-BSC/chain-of-diagnosis - HPAI-BSC/MedS-Ins - HPAI-BSC/ultramedical - HPAI-BSC/pubmedqa-cot-llama31 - HPAI-BSC/medqa-cot-llama31 - HPAI-BSC/medmcqa-cot-llama31 - HPAI-BSC/headqa-cot-llama31 - HPAI-BSC/MMLU-medical-cot-llama31 - HPAI-BSC/Polymed-QA - HPAI-BSC/Aloe-Beta-General-Collection - HPAI-BSC/Aloe-Beta-General-Collection language: - en library_name: transformers license: apache-2.0 pipeline_tag: question-answering tags: - biology - medical - healthcare - mlx --- # mlx-community/Qwen2.5-Aloe-Beta-7B The Model [mlx-community/Qwen2.5-Aloe-Beta-7B](https://huggingface.co/mlx-community/Qwen2.5-Aloe-Beta-7B) was converted to MLX format from [HPAI-BSC/Qwen2.5-Aloe-Beta-7B](https://huggingface.co/HPAI-BSC/Qwen2.5-Aloe-Beta-7B) using mlx-lm version **0.20.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/Qwen2.5-Aloe-Beta-7B") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```