File size: 2,518 Bytes
f9965d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
---
license: apache-2.0
datasets:
- Nikity/Kyoto-Corpus
language:
- en
base_model: mlx-community/lille-130m-instruct-fp16
base_model_relation: finetune
pipeline_tag: text-generation
tags:
- mlx
library_name: mlx
model-index:
- name: lille-130m-instruct
results:
- task:
type: text-generation
dataset:
name: arc_challenge
type: arc_challenge
metrics:
- type: Accuracy
value: 15.05
name: ARC (Challenge)
- task:
type: text-generation
dataset:
name: arc_easy
type: arc_easy
metrics:
- type: Accuracy
value: 21.4
name: ARC (Easy)
- task:
type: text-generation
dataset:
name: gpqa
type: gpqa
metrics:
- type: Accuracy
value: 12.73
name: GPQA
- task:
type: text-generation
dataset:
name: gsm8k
type: gsm8k
metrics:
- type: Accuracy
value: 7.73
name: GSM8K
- task:
type: text-generation
dataset:
name: ifeval
type: ifeval
metrics:
- type: Accuracy
value: 9.01
name: IFEVAL
- task:
type: text-generation
dataset:
name: math
type: math
metrics:
- type: Accuracy
value: 1.91
name: MATH (Level 5)
- task:
type: text-generation
dataset:
name: mmlu
type: mmlu
metrics:
- type: Accuracy
value: 22.76
name: MMLU
- task:
type: text-generation
dataset:
name: mt_bench
type: mt_bench
metrics:
- type: Accuracy
value: 8.2
name: MT-Bench
- task:
type: text-generation
dataset:
name: truthful_qa
type: truthful_qa
metrics:
- type: Accuracy
value: 9.06
name: TruthfulQA
---
# mlx-community/lille-130m-instruct-bf16
This model [mlx-community/lille-130m-instruct-bf16](https://huggingface.co/mlx-community/lille-130m-instruct-bf16) was
converted to MLX format from [mlx-community/lille-130m-instruct-fp16](https://huggingface.co/mlx-community/lille-130m-instruct-fp16)
using mlx-lm version **0.27.1**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/lille-130m-instruct-bf16")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|