María Navas Loro commited on
Commit
ee7b0a0
·
1 Parent(s): e33c867

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +263 -0
README.md ADDED
@@ -0,0 +1,263 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - precision
6
+ - recall
7
+ - f1
8
+ - accuracy
9
+ model-index:
10
+ - name: beto-finetuned-token-reqadjinsiders
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # beto-finetuned-token-reqadjinsiders
18
+
19
+ This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.7385
22
+ - Precision: 0.0833
23
+ - Recall: 0.1
24
+ - F1: 0.0909
25
+ - Accuracy: 0.9092
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 0.0001
45
+ - train_batch_size: 8
46
+ - eval_batch_size: 8
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 200
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
55
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
56
+ | 0.5869 | 1.0 | 10 | 0.4001 | 0.0 | 0.0 | 0.0 | 0.8196 |
57
+ | 0.2986 | 2.0 | 20 | 0.4095 | 0.0 | 0.0 | 0.0 | 0.8876 |
58
+ | 0.2215 | 3.0 | 30 | 0.3336 | 0.0 | 0.0 | 0.0 | 0.8643 |
59
+ | 0.1356 | 4.0 | 40 | 0.3362 | 0.0 | 0.0 | 0.0 | 0.8954 |
60
+ | 0.0717 | 5.0 | 50 | 0.3489 | 0.0 | 0.0 | 0.0 | 0.8987 |
61
+ | 0.0424 | 6.0 | 60 | 0.4066 | 0.0 | 0.0 | 0.0 | 0.9044 |
62
+ | 0.0301 | 7.0 | 70 | 0.3172 | 0.0741 | 0.1 | 0.0851 | 0.9227 |
63
+ | 0.0191 | 8.0 | 80 | 0.5007 | 0.0435 | 0.05 | 0.0465 | 0.9050 |
64
+ | 0.0155 | 9.0 | 90 | 0.5146 | 0.1 | 0.05 | 0.0667 | 0.9133 |
65
+ | 0.0174 | 10.0 | 100 | 0.3293 | 0.0465 | 0.1 | 0.0635 | 0.9122 |
66
+ | 0.0113 | 11.0 | 110 | 0.4793 | 0.0714 | 0.1 | 0.0833 | 0.9179 |
67
+ | 0.0136 | 12.0 | 120 | 0.4758 | 0.1905 | 0.2 | 0.1951 | 0.9259 |
68
+ | 0.0095 | 13.0 | 130 | 0.3407 | 0.0571 | 0.1 | 0.0727 | 0.9231 |
69
+ | 0.0113 | 14.0 | 140 | 0.3864 | 0.0833 | 0.1 | 0.0909 | 0.9076 |
70
+ | 0.0036 | 15.0 | 150 | 0.4718 | 0.0741 | 0.1 | 0.0851 | 0.9096 |
71
+ | 0.0036 | 16.0 | 160 | 0.5261 | 0.0882 | 0.15 | 0.1111 | 0.8965 |
72
+ | 0.0021 | 17.0 | 170 | 0.6655 | 0.0417 | 0.05 | 0.0455 | 0.8902 |
73
+ | 0.0033 | 18.0 | 180 | 0.5417 | 0.1212 | 0.2 | 0.1509 | 0.9054 |
74
+ | 0.0023 | 19.0 | 190 | 0.6521 | 0.1111 | 0.1 | 0.1053 | 0.9083 |
75
+ | 0.0021 | 20.0 | 200 | 0.4450 | 0.0909 | 0.15 | 0.1132 | 0.9214 |
76
+ | 0.0038 | 21.0 | 210 | 0.5652 | 0.1429 | 0.1 | 0.1176 | 0.9194 |
77
+ | 0.0088 | 22.0 | 220 | 0.5791 | 0.0833 | 0.1 | 0.0909 | 0.8874 |
78
+ | 0.0036 | 23.0 | 230 | 0.4630 | 0.1034 | 0.15 | 0.1224 | 0.9063 |
79
+ | 0.003 | 24.0 | 240 | 0.5352 | 0.12 | 0.15 | 0.1333 | 0.9144 |
80
+ | 0.0028 | 25.0 | 250 | 0.5582 | 0.1111 | 0.1 | 0.1053 | 0.9107 |
81
+ | 0.0016 | 26.0 | 260 | 0.6038 | 0.075 | 0.15 | 0.1 | 0.9009 |
82
+ | 0.0024 | 27.0 | 270 | 0.5846 | 0.0909 | 0.1 | 0.0952 | 0.9124 |
83
+ | 0.0011 | 28.0 | 280 | 0.5600 | 0.125 | 0.15 | 0.1364 | 0.8993 |
84
+ | 0.0007 | 29.0 | 290 | 0.5614 | 0.0938 | 0.15 | 0.1154 | 0.8954 |
85
+ | 0.0006 | 30.0 | 300 | 0.5480 | 0.1176 | 0.1 | 0.1081 | 0.9129 |
86
+ | 0.006 | 31.0 | 310 | 0.5170 | 0.1176 | 0.2 | 0.1481 | 0.9039 |
87
+ | 0.0012 | 32.0 | 320 | 0.5699 | 0.0769 | 0.05 | 0.0606 | 0.8961 |
88
+ | 0.0004 | 33.0 | 330 | 0.6046 | 0.0476 | 0.05 | 0.0488 | 0.8928 |
89
+ | 0.0002 | 34.0 | 340 | 0.6708 | 0.0556 | 0.05 | 0.0526 | 0.8919 |
90
+ | 0.0001 | 35.0 | 350 | 0.7087 | 0.0435 | 0.05 | 0.0465 | 0.8948 |
91
+ | 0.0002 | 36.0 | 360 | 0.7225 | 0.05 | 0.05 | 0.0500 | 0.8976 |
92
+ | 0.0 | 37.0 | 370 | 0.7294 | 0.0435 | 0.05 | 0.0465 | 0.8985 |
93
+ | 0.0003 | 38.0 | 380 | 0.7182 | 0.0370 | 0.05 | 0.0426 | 0.9026 |
94
+ | 0.0002 | 39.0 | 390 | 0.7298 | 0.05 | 0.05 | 0.0500 | 0.9061 |
95
+ | 0.0003 | 40.0 | 400 | 0.7313 | 0.0588 | 0.05 | 0.0541 | 0.9068 |
96
+ | 0.0 | 41.0 | 410 | 0.7412 | 0.0526 | 0.05 | 0.0513 | 0.9068 |
97
+ | 0.0 | 42.0 | 420 | 0.7447 | 0.0556 | 0.05 | 0.0526 | 0.9068 |
98
+ | 0.0 | 43.0 | 430 | 0.7465 | 0.0588 | 0.05 | 0.0541 | 0.9076 |
99
+ | 0.0 | 44.0 | 440 | 0.7500 | 0.0455 | 0.05 | 0.0476 | 0.9070 |
100
+ | 0.0 | 45.0 | 450 | 0.7525 | 0.0435 | 0.05 | 0.0465 | 0.9065 |
101
+ | 0.0002 | 46.0 | 460 | 0.7540 | 0.0476 | 0.05 | 0.0488 | 0.9068 |
102
+ | 0.0003 | 47.0 | 470 | 0.7422 | 0.0455 | 0.05 | 0.0476 | 0.9068 |
103
+ | 0.0 | 48.0 | 480 | 0.7378 | 0.0435 | 0.05 | 0.0465 | 0.9070 |
104
+ | 0.0 | 49.0 | 490 | 0.7384 | 0.0417 | 0.05 | 0.0455 | 0.9068 |
105
+ | 0.0 | 50.0 | 500 | 0.7414 | 0.0455 | 0.05 | 0.0476 | 0.9070 |
106
+ | 0.0 | 51.0 | 510 | 0.7446 | 0.0455 | 0.05 | 0.0476 | 0.9070 |
107
+ | 0.0 | 52.0 | 520 | 0.7432 | 0.0385 | 0.05 | 0.0435 | 0.9061 |
108
+ | 0.0003 | 53.0 | 530 | 0.7474 | 0.0417 | 0.05 | 0.0455 | 0.9065 |
109
+ | 0.0002 | 54.0 | 540 | 0.7513 | 0.04 | 0.05 | 0.0444 | 0.9068 |
110
+ | 0.0 | 55.0 | 550 | 0.7505 | 0.0455 | 0.05 | 0.0476 | 0.9076 |
111
+ | 0.0003 | 56.0 | 560 | 0.7419 | 0.0417 | 0.05 | 0.0455 | 0.9072 |
112
+ | 0.0 | 57.0 | 570 | 0.7352 | 0.04 | 0.05 | 0.0444 | 0.9070 |
113
+ | 0.0 | 58.0 | 580 | 0.7330 | 0.04 | 0.05 | 0.0444 | 0.9068 |
114
+ | 0.0 | 59.0 | 590 | 0.7330 | 0.04 | 0.05 | 0.0444 | 0.9063 |
115
+ | 0.0 | 60.0 | 600 | 0.7343 | 0.04 | 0.05 | 0.0444 | 0.9061 |
116
+ | 0.0 | 61.0 | 610 | 0.7370 | 0.0385 | 0.05 | 0.0435 | 0.9063 |
117
+ | 0.0003 | 62.0 | 620 | 0.7303 | 0.04 | 0.05 | 0.0444 | 0.9063 |
118
+ | 0.0 | 63.0 | 630 | 0.7275 | 0.04 | 0.05 | 0.0444 | 0.9059 |
119
+ | 0.0 | 64.0 | 640 | 0.7283 | 0.04 | 0.05 | 0.0444 | 0.9057 |
120
+ | 0.0 | 65.0 | 650 | 0.7312 | 0.04 | 0.05 | 0.0444 | 0.9059 |
121
+ | 0.0002 | 66.0 | 660 | 0.7243 | 0.0345 | 0.05 | 0.0408 | 0.9074 |
122
+ | 0.0001 | 67.0 | 670 | 0.7195 | 0.05 | 0.05 | 0.0500 | 0.9081 |
123
+ | 0.0001 | 68.0 | 680 | 0.7350 | 0.0714 | 0.05 | 0.0588 | 0.9061 |
124
+ | 0.0001 | 69.0 | 690 | 0.7750 | 0.0625 | 0.05 | 0.0556 | 0.9061 |
125
+ | 0.0005 | 70.0 | 700 | 0.6559 | 0.0571 | 0.1 | 0.0727 | 0.9031 |
126
+ | 0.0003 | 71.0 | 710 | 0.6497 | 0.0385 | 0.05 | 0.0435 | 0.9131 |
127
+ | 0.0002 | 72.0 | 720 | 0.6621 | 0.0588 | 0.05 | 0.0541 | 0.9133 |
128
+ | 0.0007 | 73.0 | 730 | 0.6093 | 0.0741 | 0.1 | 0.0851 | 0.9126 |
129
+ | 0.0004 | 74.0 | 740 | 0.6184 | 0.0909 | 0.1 | 0.0952 | 0.9135 |
130
+ | 0.0005 | 75.0 | 750 | 0.5911 | 0.0952 | 0.1 | 0.0976 | 0.9142 |
131
+ | 0.0001 | 76.0 | 760 | 0.5567 | 0.0625 | 0.1 | 0.0769 | 0.9102 |
132
+ | 0.0002 | 77.0 | 770 | 0.5670 | 0.0571 | 0.1 | 0.0727 | 0.9096 |
133
+ | 0.0002 | 78.0 | 780 | 0.5940 | 0.0588 | 0.1 | 0.0741 | 0.9129 |
134
+ | 0.0001 | 79.0 | 790 | 0.6299 | 0.0455 | 0.05 | 0.0476 | 0.9139 |
135
+ | 0.0 | 80.0 | 800 | 0.6449 | 0.0455 | 0.05 | 0.0476 | 0.9135 |
136
+ | 0.0 | 81.0 | 810 | 0.6519 | 0.0417 | 0.05 | 0.0455 | 0.9131 |
137
+ | 0.0002 | 82.0 | 820 | 0.6378 | 0.0690 | 0.1 | 0.0816 | 0.9118 |
138
+ | 0.0 | 83.0 | 830 | 0.6267 | 0.0588 | 0.1 | 0.0741 | 0.9046 |
139
+ | 0.0004 | 84.0 | 840 | 0.6174 | 0.0625 | 0.1 | 0.0769 | 0.9065 |
140
+ | 0.0002 | 85.0 | 850 | 0.6174 | 0.0714 | 0.1 | 0.0833 | 0.9124 |
141
+ | 0.0001 | 86.0 | 860 | 0.6225 | 0.0909 | 0.1 | 0.0952 | 0.9135 |
142
+ | 0.0001 | 87.0 | 870 | 0.6384 | 0.0526 | 0.05 | 0.0513 | 0.9144 |
143
+ | 0.0 | 88.0 | 880 | 0.6604 | 0.0625 | 0.05 | 0.0556 | 0.9139 |
144
+ | 0.0 | 89.0 | 890 | 0.6694 | 0.0625 | 0.05 | 0.0556 | 0.9137 |
145
+ | 0.0 | 90.0 | 900 | 0.6711 | 0.0588 | 0.05 | 0.0541 | 0.9133 |
146
+ | 0.0001 | 91.0 | 910 | 0.6526 | 0.0435 | 0.05 | 0.0465 | 0.9124 |
147
+ | 0.0 | 92.0 | 920 | 0.6450 | 0.0417 | 0.05 | 0.0455 | 0.9124 |
148
+ | 0.0002 | 93.0 | 930 | 0.6504 | 0.0417 | 0.05 | 0.0455 | 0.9113 |
149
+ | 0.0 | 94.0 | 940 | 0.6711 | 0.0455 | 0.05 | 0.0476 | 0.9118 |
150
+ | 0.0 | 95.0 | 950 | 0.6789 | 0.0417 | 0.05 | 0.0455 | 0.9118 |
151
+ | 0.0 | 96.0 | 960 | 0.6828 | 0.0476 | 0.05 | 0.0488 | 0.9111 |
152
+ | 0.0 | 97.0 | 970 | 0.6863 | 0.0455 | 0.05 | 0.0476 | 0.9111 |
153
+ | 0.0001 | 98.0 | 980 | 0.6811 | 0.04 | 0.05 | 0.0444 | 0.9115 |
154
+ | 0.0 | 99.0 | 990 | 0.6787 | 0.0833 | 0.1 | 0.0909 | 0.9133 |
155
+ | 0.0001 | 100.0 | 1000 | 0.6914 | 0.0476 | 0.05 | 0.0488 | 0.9120 |
156
+ | 0.0 | 101.0 | 1010 | 0.7028 | 0.0588 | 0.05 | 0.0541 | 0.9118 |
157
+ | 0.0 | 102.0 | 1020 | 0.7089 | 0.0556 | 0.05 | 0.0526 | 0.9109 |
158
+ | 0.0 | 103.0 | 1030 | 0.7152 | 0.0588 | 0.05 | 0.0541 | 0.9111 |
159
+ | 0.0 | 104.0 | 1040 | 0.7151 | 0.0625 | 0.05 | 0.0556 | 0.9107 |
160
+ | 0.0 | 105.0 | 1050 | 0.7126 | 0.0556 | 0.05 | 0.0526 | 0.9105 |
161
+ | 0.0 | 106.0 | 1060 | 0.7065 | 0.0526 | 0.05 | 0.0513 | 0.9094 |
162
+ | 0.0002 | 107.0 | 1070 | 0.7154 | 0.05 | 0.05 | 0.0500 | 0.9089 |
163
+ | 0.0001 | 108.0 | 1080 | 0.6777 | 0.12 | 0.15 | 0.1333 | 0.9078 |
164
+ | 0.0 | 109.0 | 1090 | 0.6683 | 0.1 | 0.15 | 0.12 | 0.9074 |
165
+ | 0.0001 | 110.0 | 1100 | 0.6622 | 0.0909 | 0.15 | 0.1132 | 0.9070 |
166
+ | 0.0003 | 111.0 | 1110 | 0.6750 | 0.08 | 0.1 | 0.0889 | 0.9057 |
167
+ | 0.0001 | 112.0 | 1120 | 0.7000 | 0.1053 | 0.1 | 0.1026 | 0.9061 |
168
+ | 0.0001 | 113.0 | 1130 | 0.7136 | 0.1053 | 0.1 | 0.1026 | 0.9046 |
169
+ | 0.0001 | 114.0 | 1140 | 0.7234 | 0.1 | 0.1 | 0.1000 | 0.9037 |
170
+ | 0.0 | 115.0 | 1150 | 0.7643 | 0.0870 | 0.1 | 0.0930 | 0.8998 |
171
+ | 0.0001 | 116.0 | 1160 | 0.7801 | 0.0769 | 0.1 | 0.0870 | 0.9002 |
172
+ | 0.0 | 117.0 | 1170 | 0.7872 | 0.0769 | 0.1 | 0.0870 | 0.9009 |
173
+ | 0.0003 | 118.0 | 1180 | 0.7597 | 0.0690 | 0.1 | 0.0816 | 0.8983 |
174
+ | 0.0002 | 119.0 | 1190 | 0.7564 | 0.0606 | 0.1 | 0.0755 | 0.8989 |
175
+ | 0.0 | 120.0 | 1200 | 0.7558 | 0.0606 | 0.1 | 0.0755 | 0.8998 |
176
+ | 0.0 | 121.0 | 1210 | 0.7566 | 0.0625 | 0.1 | 0.0769 | 0.9002 |
177
+ | 0.0 | 122.0 | 1220 | 0.7579 | 0.0606 | 0.1 | 0.0755 | 0.8991 |
178
+ | 0.0 | 123.0 | 1230 | 0.7603 | 0.0606 | 0.1 | 0.0755 | 0.8989 |
179
+ | 0.0 | 124.0 | 1240 | 0.7626 | 0.0667 | 0.1 | 0.08 | 0.8980 |
180
+ | 0.0 | 125.0 | 1250 | 0.7645 | 0.0690 | 0.1 | 0.0816 | 0.8980 |
181
+ | 0.0 | 126.0 | 1260 | 0.7666 | 0.0625 | 0.1 | 0.0769 | 0.8978 |
182
+ | 0.0 | 127.0 | 1270 | 0.7689 | 0.0645 | 0.1 | 0.0784 | 0.8976 |
183
+ | 0.0 | 128.0 | 1280 | 0.7707 | 0.0645 | 0.1 | 0.0784 | 0.8974 |
184
+ | 0.0 | 129.0 | 1290 | 0.7718 | 0.0645 | 0.1 | 0.0784 | 0.8967 |
185
+ | 0.0 | 130.0 | 1300 | 0.7730 | 0.0606 | 0.1 | 0.0755 | 0.8976 |
186
+ | 0.0 | 131.0 | 1310 | 0.7738 | 0.0606 | 0.1 | 0.0755 | 0.8989 |
187
+ | 0.0003 | 132.0 | 1320 | 0.7744 | 0.0588 | 0.1 | 0.0741 | 0.9002 |
188
+ | 0.0 | 133.0 | 1330 | 0.7762 | 0.0606 | 0.1 | 0.0755 | 0.9013 |
189
+ | 0.0 | 134.0 | 1340 | 0.7784 | 0.0606 | 0.1 | 0.0755 | 0.9037 |
190
+ | 0.0 | 135.0 | 1350 | 0.7798 | 0.0667 | 0.1 | 0.08 | 0.9048 |
191
+ | 0.0002 | 136.0 | 1360 | 0.7357 | 0.0588 | 0.1 | 0.0741 | 0.9002 |
192
+ | 0.0002 | 137.0 | 1370 | 0.6891 | 0.08 | 0.1 | 0.0889 | 0.9 |
193
+ | 0.0001 | 138.0 | 1380 | 0.6732 | 0.0769 | 0.1 | 0.0870 | 0.9065 |
194
+ | 0.0001 | 139.0 | 1390 | 0.6808 | 0.0870 | 0.1 | 0.0930 | 0.9096 |
195
+ | 0.0 | 140.0 | 1400 | 0.6845 | 0.0833 | 0.1 | 0.0909 | 0.9098 |
196
+ | 0.0 | 141.0 | 1410 | 0.6880 | 0.0870 | 0.1 | 0.0930 | 0.9096 |
197
+ | 0.0 | 142.0 | 1420 | 0.6915 | 0.0870 | 0.1 | 0.0930 | 0.9096 |
198
+ | 0.0 | 143.0 | 1430 | 0.6945 | 0.08 | 0.1 | 0.0889 | 0.9096 |
199
+ | 0.0 | 144.0 | 1440 | 0.6966 | 0.0769 | 0.1 | 0.0870 | 0.9094 |
200
+ | 0.0 | 145.0 | 1450 | 0.6986 | 0.0909 | 0.1 | 0.0952 | 0.9109 |
201
+ | 0.0 | 146.0 | 1460 | 0.7015 | 0.0952 | 0.1 | 0.0976 | 0.9109 |
202
+ | 0.0 | 147.0 | 1470 | 0.7036 | 0.1 | 0.1 | 0.1000 | 0.9113 |
203
+ | 0.0 | 148.0 | 1480 | 0.7054 | 0.1 | 0.1 | 0.1000 | 0.9113 |
204
+ | 0.0 | 149.0 | 1490 | 0.7078 | 0.1 | 0.1 | 0.1000 | 0.9113 |
205
+ | 0.0 | 150.0 | 1500 | 0.7091 | 0.1 | 0.1 | 0.1000 | 0.9113 |
206
+ | 0.0 | 151.0 | 1510 | 0.7111 | 0.1 | 0.1 | 0.1000 | 0.9113 |
207
+ | 0.0 | 152.0 | 1520 | 0.7127 | 0.1 | 0.1 | 0.1000 | 0.9113 |
208
+ | 0.0 | 153.0 | 1530 | 0.7141 | 0.1 | 0.1 | 0.1000 | 0.9113 |
209
+ | 0.0 | 154.0 | 1540 | 0.7160 | 0.1 | 0.1 | 0.1000 | 0.9113 |
210
+ | 0.0 | 155.0 | 1550 | 0.7191 | 0.1053 | 0.1 | 0.1026 | 0.9109 |
211
+ | 0.0 | 156.0 | 1560 | 0.7205 | 0.1053 | 0.1 | 0.1026 | 0.9109 |
212
+ | 0.0 | 157.0 | 1570 | 0.7217 | 0.1053 | 0.1 | 0.1026 | 0.9109 |
213
+ | 0.0 | 158.0 | 1580 | 0.7225 | 0.1 | 0.1 | 0.1000 | 0.9113 |
214
+ | 0.0 | 159.0 | 1590 | 0.7231 | 0.1 | 0.1 | 0.1000 | 0.9113 |
215
+ | 0.0 | 160.0 | 1600 | 0.7238 | 0.1 | 0.1 | 0.1000 | 0.9113 |
216
+ | 0.0 | 161.0 | 1610 | 0.7245 | 0.1 | 0.1 | 0.1000 | 0.9113 |
217
+ | 0.0 | 162.0 | 1620 | 0.7252 | 0.1 | 0.1 | 0.1000 | 0.9113 |
218
+ | 0.0 | 163.0 | 1630 | 0.7258 | 0.1 | 0.1 | 0.1000 | 0.9113 |
219
+ | 0.0 | 164.0 | 1640 | 0.7261 | 0.1 | 0.1 | 0.1000 | 0.9113 |
220
+ | 0.0 | 165.0 | 1650 | 0.7266 | 0.1 | 0.1 | 0.1000 | 0.9113 |
221
+ | 0.0 | 166.0 | 1660 | 0.7273 | 0.1 | 0.1 | 0.1000 | 0.9113 |
222
+ | 0.0 | 167.0 | 1670 | 0.7278 | 0.1 | 0.1 | 0.1000 | 0.9113 |
223
+ | 0.0 | 168.0 | 1680 | 0.7286 | 0.1 | 0.1 | 0.1000 | 0.9113 |
224
+ | 0.0 | 169.0 | 1690 | 0.7295 | 0.1 | 0.1 | 0.1000 | 0.9113 |
225
+ | 0.0 | 170.0 | 1700 | 0.7303 | 0.1 | 0.1 | 0.1000 | 0.9113 |
226
+ | 0.0 | 171.0 | 1710 | 0.7310 | 0.1 | 0.1 | 0.1000 | 0.9113 |
227
+ | 0.0 | 172.0 | 1720 | 0.7316 | 0.1 | 0.1 | 0.1000 | 0.9113 |
228
+ | 0.0002 | 173.0 | 1730 | 0.7248 | 0.1 | 0.1 | 0.1000 | 0.9107 |
229
+ | 0.0 | 174.0 | 1740 | 0.7180 | 0.0909 | 0.1 | 0.0952 | 0.9096 |
230
+ | 0.0003 | 175.0 | 1750 | 0.7154 | 0.0909 | 0.1 | 0.0952 | 0.9096 |
231
+ | 0.0 | 176.0 | 1760 | 0.7161 | 0.0909 | 0.1 | 0.0952 | 0.9094 |
232
+ | 0.0 | 177.0 | 1770 | 0.7251 | 0.0870 | 0.1 | 0.0930 | 0.9094 |
233
+ | 0.0 | 178.0 | 1780 | 0.7282 | 0.0870 | 0.1 | 0.0930 | 0.9094 |
234
+ | 0.0 | 179.0 | 1790 | 0.7297 | 0.0870 | 0.1 | 0.0930 | 0.9094 |
235
+ | 0.0 | 180.0 | 1800 | 0.7304 | 0.0870 | 0.1 | 0.0930 | 0.9094 |
236
+ | 0.0 | 181.0 | 1810 | 0.7308 | 0.0870 | 0.1 | 0.0930 | 0.9094 |
237
+ | 0.0 | 182.0 | 1820 | 0.7315 | 0.0870 | 0.1 | 0.0930 | 0.9094 |
238
+ | 0.0 | 183.0 | 1830 | 0.7334 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
239
+ | 0.0 | 184.0 | 1840 | 0.7345 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
240
+ | 0.0 | 185.0 | 1850 | 0.7349 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
241
+ | 0.0 | 186.0 | 1860 | 0.7353 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
242
+ | 0.0 | 187.0 | 1870 | 0.7356 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
243
+ | 0.0 | 188.0 | 1880 | 0.7360 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
244
+ | 0.0 | 189.0 | 1890 | 0.7365 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
245
+ | 0.0 | 190.0 | 1900 | 0.7368 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
246
+ | 0.0 | 191.0 | 1910 | 0.7370 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
247
+ | 0.0 | 192.0 | 1920 | 0.7374 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
248
+ | 0.0 | 193.0 | 1930 | 0.7375 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
249
+ | 0.0 | 194.0 | 1940 | 0.7378 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
250
+ | 0.0 | 195.0 | 1950 | 0.7379 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
251
+ | 0.0 | 196.0 | 1960 | 0.7378 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
252
+ | 0.0 | 197.0 | 1970 | 0.7381 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
253
+ | 0.0 | 198.0 | 1980 | 0.7384 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
254
+ | 0.0 | 199.0 | 1990 | 0.7385 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
255
+ | 0.0 | 200.0 | 2000 | 0.7385 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
256
+
257
+
258
+ ### Framework versions
259
+
260
+ - Transformers 4.31.0.dev0
261
+ - Pytorch 2.0.0
262
+ - Datasets 2.1.0
263
+ - Tokenizers 0.13.3