María Navas Loro
commited on
Commit
·
ee7b0a0
1
Parent(s):
e33c867
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- precision
|
6 |
+
- recall
|
7 |
+
- f1
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: beto-finetuned-token-reqadjinsiders
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# beto-finetuned-token-reqadjinsiders
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.7385
|
22 |
+
- Precision: 0.0833
|
23 |
+
- Recall: 0.1
|
24 |
+
- F1: 0.0909
|
25 |
+
- Accuracy: 0.9092
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 0.0001
|
45 |
+
- train_batch_size: 8
|
46 |
+
- eval_batch_size: 8
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 200
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
56 |
+
| 0.5869 | 1.0 | 10 | 0.4001 | 0.0 | 0.0 | 0.0 | 0.8196 |
|
57 |
+
| 0.2986 | 2.0 | 20 | 0.4095 | 0.0 | 0.0 | 0.0 | 0.8876 |
|
58 |
+
| 0.2215 | 3.0 | 30 | 0.3336 | 0.0 | 0.0 | 0.0 | 0.8643 |
|
59 |
+
| 0.1356 | 4.0 | 40 | 0.3362 | 0.0 | 0.0 | 0.0 | 0.8954 |
|
60 |
+
| 0.0717 | 5.0 | 50 | 0.3489 | 0.0 | 0.0 | 0.0 | 0.8987 |
|
61 |
+
| 0.0424 | 6.0 | 60 | 0.4066 | 0.0 | 0.0 | 0.0 | 0.9044 |
|
62 |
+
| 0.0301 | 7.0 | 70 | 0.3172 | 0.0741 | 0.1 | 0.0851 | 0.9227 |
|
63 |
+
| 0.0191 | 8.0 | 80 | 0.5007 | 0.0435 | 0.05 | 0.0465 | 0.9050 |
|
64 |
+
| 0.0155 | 9.0 | 90 | 0.5146 | 0.1 | 0.05 | 0.0667 | 0.9133 |
|
65 |
+
| 0.0174 | 10.0 | 100 | 0.3293 | 0.0465 | 0.1 | 0.0635 | 0.9122 |
|
66 |
+
| 0.0113 | 11.0 | 110 | 0.4793 | 0.0714 | 0.1 | 0.0833 | 0.9179 |
|
67 |
+
| 0.0136 | 12.0 | 120 | 0.4758 | 0.1905 | 0.2 | 0.1951 | 0.9259 |
|
68 |
+
| 0.0095 | 13.0 | 130 | 0.3407 | 0.0571 | 0.1 | 0.0727 | 0.9231 |
|
69 |
+
| 0.0113 | 14.0 | 140 | 0.3864 | 0.0833 | 0.1 | 0.0909 | 0.9076 |
|
70 |
+
| 0.0036 | 15.0 | 150 | 0.4718 | 0.0741 | 0.1 | 0.0851 | 0.9096 |
|
71 |
+
| 0.0036 | 16.0 | 160 | 0.5261 | 0.0882 | 0.15 | 0.1111 | 0.8965 |
|
72 |
+
| 0.0021 | 17.0 | 170 | 0.6655 | 0.0417 | 0.05 | 0.0455 | 0.8902 |
|
73 |
+
| 0.0033 | 18.0 | 180 | 0.5417 | 0.1212 | 0.2 | 0.1509 | 0.9054 |
|
74 |
+
| 0.0023 | 19.0 | 190 | 0.6521 | 0.1111 | 0.1 | 0.1053 | 0.9083 |
|
75 |
+
| 0.0021 | 20.0 | 200 | 0.4450 | 0.0909 | 0.15 | 0.1132 | 0.9214 |
|
76 |
+
| 0.0038 | 21.0 | 210 | 0.5652 | 0.1429 | 0.1 | 0.1176 | 0.9194 |
|
77 |
+
| 0.0088 | 22.0 | 220 | 0.5791 | 0.0833 | 0.1 | 0.0909 | 0.8874 |
|
78 |
+
| 0.0036 | 23.0 | 230 | 0.4630 | 0.1034 | 0.15 | 0.1224 | 0.9063 |
|
79 |
+
| 0.003 | 24.0 | 240 | 0.5352 | 0.12 | 0.15 | 0.1333 | 0.9144 |
|
80 |
+
| 0.0028 | 25.0 | 250 | 0.5582 | 0.1111 | 0.1 | 0.1053 | 0.9107 |
|
81 |
+
| 0.0016 | 26.0 | 260 | 0.6038 | 0.075 | 0.15 | 0.1 | 0.9009 |
|
82 |
+
| 0.0024 | 27.0 | 270 | 0.5846 | 0.0909 | 0.1 | 0.0952 | 0.9124 |
|
83 |
+
| 0.0011 | 28.0 | 280 | 0.5600 | 0.125 | 0.15 | 0.1364 | 0.8993 |
|
84 |
+
| 0.0007 | 29.0 | 290 | 0.5614 | 0.0938 | 0.15 | 0.1154 | 0.8954 |
|
85 |
+
| 0.0006 | 30.0 | 300 | 0.5480 | 0.1176 | 0.1 | 0.1081 | 0.9129 |
|
86 |
+
| 0.006 | 31.0 | 310 | 0.5170 | 0.1176 | 0.2 | 0.1481 | 0.9039 |
|
87 |
+
| 0.0012 | 32.0 | 320 | 0.5699 | 0.0769 | 0.05 | 0.0606 | 0.8961 |
|
88 |
+
| 0.0004 | 33.0 | 330 | 0.6046 | 0.0476 | 0.05 | 0.0488 | 0.8928 |
|
89 |
+
| 0.0002 | 34.0 | 340 | 0.6708 | 0.0556 | 0.05 | 0.0526 | 0.8919 |
|
90 |
+
| 0.0001 | 35.0 | 350 | 0.7087 | 0.0435 | 0.05 | 0.0465 | 0.8948 |
|
91 |
+
| 0.0002 | 36.0 | 360 | 0.7225 | 0.05 | 0.05 | 0.0500 | 0.8976 |
|
92 |
+
| 0.0 | 37.0 | 370 | 0.7294 | 0.0435 | 0.05 | 0.0465 | 0.8985 |
|
93 |
+
| 0.0003 | 38.0 | 380 | 0.7182 | 0.0370 | 0.05 | 0.0426 | 0.9026 |
|
94 |
+
| 0.0002 | 39.0 | 390 | 0.7298 | 0.05 | 0.05 | 0.0500 | 0.9061 |
|
95 |
+
| 0.0003 | 40.0 | 400 | 0.7313 | 0.0588 | 0.05 | 0.0541 | 0.9068 |
|
96 |
+
| 0.0 | 41.0 | 410 | 0.7412 | 0.0526 | 0.05 | 0.0513 | 0.9068 |
|
97 |
+
| 0.0 | 42.0 | 420 | 0.7447 | 0.0556 | 0.05 | 0.0526 | 0.9068 |
|
98 |
+
| 0.0 | 43.0 | 430 | 0.7465 | 0.0588 | 0.05 | 0.0541 | 0.9076 |
|
99 |
+
| 0.0 | 44.0 | 440 | 0.7500 | 0.0455 | 0.05 | 0.0476 | 0.9070 |
|
100 |
+
| 0.0 | 45.0 | 450 | 0.7525 | 0.0435 | 0.05 | 0.0465 | 0.9065 |
|
101 |
+
| 0.0002 | 46.0 | 460 | 0.7540 | 0.0476 | 0.05 | 0.0488 | 0.9068 |
|
102 |
+
| 0.0003 | 47.0 | 470 | 0.7422 | 0.0455 | 0.05 | 0.0476 | 0.9068 |
|
103 |
+
| 0.0 | 48.0 | 480 | 0.7378 | 0.0435 | 0.05 | 0.0465 | 0.9070 |
|
104 |
+
| 0.0 | 49.0 | 490 | 0.7384 | 0.0417 | 0.05 | 0.0455 | 0.9068 |
|
105 |
+
| 0.0 | 50.0 | 500 | 0.7414 | 0.0455 | 0.05 | 0.0476 | 0.9070 |
|
106 |
+
| 0.0 | 51.0 | 510 | 0.7446 | 0.0455 | 0.05 | 0.0476 | 0.9070 |
|
107 |
+
| 0.0 | 52.0 | 520 | 0.7432 | 0.0385 | 0.05 | 0.0435 | 0.9061 |
|
108 |
+
| 0.0003 | 53.0 | 530 | 0.7474 | 0.0417 | 0.05 | 0.0455 | 0.9065 |
|
109 |
+
| 0.0002 | 54.0 | 540 | 0.7513 | 0.04 | 0.05 | 0.0444 | 0.9068 |
|
110 |
+
| 0.0 | 55.0 | 550 | 0.7505 | 0.0455 | 0.05 | 0.0476 | 0.9076 |
|
111 |
+
| 0.0003 | 56.0 | 560 | 0.7419 | 0.0417 | 0.05 | 0.0455 | 0.9072 |
|
112 |
+
| 0.0 | 57.0 | 570 | 0.7352 | 0.04 | 0.05 | 0.0444 | 0.9070 |
|
113 |
+
| 0.0 | 58.0 | 580 | 0.7330 | 0.04 | 0.05 | 0.0444 | 0.9068 |
|
114 |
+
| 0.0 | 59.0 | 590 | 0.7330 | 0.04 | 0.05 | 0.0444 | 0.9063 |
|
115 |
+
| 0.0 | 60.0 | 600 | 0.7343 | 0.04 | 0.05 | 0.0444 | 0.9061 |
|
116 |
+
| 0.0 | 61.0 | 610 | 0.7370 | 0.0385 | 0.05 | 0.0435 | 0.9063 |
|
117 |
+
| 0.0003 | 62.0 | 620 | 0.7303 | 0.04 | 0.05 | 0.0444 | 0.9063 |
|
118 |
+
| 0.0 | 63.0 | 630 | 0.7275 | 0.04 | 0.05 | 0.0444 | 0.9059 |
|
119 |
+
| 0.0 | 64.0 | 640 | 0.7283 | 0.04 | 0.05 | 0.0444 | 0.9057 |
|
120 |
+
| 0.0 | 65.0 | 650 | 0.7312 | 0.04 | 0.05 | 0.0444 | 0.9059 |
|
121 |
+
| 0.0002 | 66.0 | 660 | 0.7243 | 0.0345 | 0.05 | 0.0408 | 0.9074 |
|
122 |
+
| 0.0001 | 67.0 | 670 | 0.7195 | 0.05 | 0.05 | 0.0500 | 0.9081 |
|
123 |
+
| 0.0001 | 68.0 | 680 | 0.7350 | 0.0714 | 0.05 | 0.0588 | 0.9061 |
|
124 |
+
| 0.0001 | 69.0 | 690 | 0.7750 | 0.0625 | 0.05 | 0.0556 | 0.9061 |
|
125 |
+
| 0.0005 | 70.0 | 700 | 0.6559 | 0.0571 | 0.1 | 0.0727 | 0.9031 |
|
126 |
+
| 0.0003 | 71.0 | 710 | 0.6497 | 0.0385 | 0.05 | 0.0435 | 0.9131 |
|
127 |
+
| 0.0002 | 72.0 | 720 | 0.6621 | 0.0588 | 0.05 | 0.0541 | 0.9133 |
|
128 |
+
| 0.0007 | 73.0 | 730 | 0.6093 | 0.0741 | 0.1 | 0.0851 | 0.9126 |
|
129 |
+
| 0.0004 | 74.0 | 740 | 0.6184 | 0.0909 | 0.1 | 0.0952 | 0.9135 |
|
130 |
+
| 0.0005 | 75.0 | 750 | 0.5911 | 0.0952 | 0.1 | 0.0976 | 0.9142 |
|
131 |
+
| 0.0001 | 76.0 | 760 | 0.5567 | 0.0625 | 0.1 | 0.0769 | 0.9102 |
|
132 |
+
| 0.0002 | 77.0 | 770 | 0.5670 | 0.0571 | 0.1 | 0.0727 | 0.9096 |
|
133 |
+
| 0.0002 | 78.0 | 780 | 0.5940 | 0.0588 | 0.1 | 0.0741 | 0.9129 |
|
134 |
+
| 0.0001 | 79.0 | 790 | 0.6299 | 0.0455 | 0.05 | 0.0476 | 0.9139 |
|
135 |
+
| 0.0 | 80.0 | 800 | 0.6449 | 0.0455 | 0.05 | 0.0476 | 0.9135 |
|
136 |
+
| 0.0 | 81.0 | 810 | 0.6519 | 0.0417 | 0.05 | 0.0455 | 0.9131 |
|
137 |
+
| 0.0002 | 82.0 | 820 | 0.6378 | 0.0690 | 0.1 | 0.0816 | 0.9118 |
|
138 |
+
| 0.0 | 83.0 | 830 | 0.6267 | 0.0588 | 0.1 | 0.0741 | 0.9046 |
|
139 |
+
| 0.0004 | 84.0 | 840 | 0.6174 | 0.0625 | 0.1 | 0.0769 | 0.9065 |
|
140 |
+
| 0.0002 | 85.0 | 850 | 0.6174 | 0.0714 | 0.1 | 0.0833 | 0.9124 |
|
141 |
+
| 0.0001 | 86.0 | 860 | 0.6225 | 0.0909 | 0.1 | 0.0952 | 0.9135 |
|
142 |
+
| 0.0001 | 87.0 | 870 | 0.6384 | 0.0526 | 0.05 | 0.0513 | 0.9144 |
|
143 |
+
| 0.0 | 88.0 | 880 | 0.6604 | 0.0625 | 0.05 | 0.0556 | 0.9139 |
|
144 |
+
| 0.0 | 89.0 | 890 | 0.6694 | 0.0625 | 0.05 | 0.0556 | 0.9137 |
|
145 |
+
| 0.0 | 90.0 | 900 | 0.6711 | 0.0588 | 0.05 | 0.0541 | 0.9133 |
|
146 |
+
| 0.0001 | 91.0 | 910 | 0.6526 | 0.0435 | 0.05 | 0.0465 | 0.9124 |
|
147 |
+
| 0.0 | 92.0 | 920 | 0.6450 | 0.0417 | 0.05 | 0.0455 | 0.9124 |
|
148 |
+
| 0.0002 | 93.0 | 930 | 0.6504 | 0.0417 | 0.05 | 0.0455 | 0.9113 |
|
149 |
+
| 0.0 | 94.0 | 940 | 0.6711 | 0.0455 | 0.05 | 0.0476 | 0.9118 |
|
150 |
+
| 0.0 | 95.0 | 950 | 0.6789 | 0.0417 | 0.05 | 0.0455 | 0.9118 |
|
151 |
+
| 0.0 | 96.0 | 960 | 0.6828 | 0.0476 | 0.05 | 0.0488 | 0.9111 |
|
152 |
+
| 0.0 | 97.0 | 970 | 0.6863 | 0.0455 | 0.05 | 0.0476 | 0.9111 |
|
153 |
+
| 0.0001 | 98.0 | 980 | 0.6811 | 0.04 | 0.05 | 0.0444 | 0.9115 |
|
154 |
+
| 0.0 | 99.0 | 990 | 0.6787 | 0.0833 | 0.1 | 0.0909 | 0.9133 |
|
155 |
+
| 0.0001 | 100.0 | 1000 | 0.6914 | 0.0476 | 0.05 | 0.0488 | 0.9120 |
|
156 |
+
| 0.0 | 101.0 | 1010 | 0.7028 | 0.0588 | 0.05 | 0.0541 | 0.9118 |
|
157 |
+
| 0.0 | 102.0 | 1020 | 0.7089 | 0.0556 | 0.05 | 0.0526 | 0.9109 |
|
158 |
+
| 0.0 | 103.0 | 1030 | 0.7152 | 0.0588 | 0.05 | 0.0541 | 0.9111 |
|
159 |
+
| 0.0 | 104.0 | 1040 | 0.7151 | 0.0625 | 0.05 | 0.0556 | 0.9107 |
|
160 |
+
| 0.0 | 105.0 | 1050 | 0.7126 | 0.0556 | 0.05 | 0.0526 | 0.9105 |
|
161 |
+
| 0.0 | 106.0 | 1060 | 0.7065 | 0.0526 | 0.05 | 0.0513 | 0.9094 |
|
162 |
+
| 0.0002 | 107.0 | 1070 | 0.7154 | 0.05 | 0.05 | 0.0500 | 0.9089 |
|
163 |
+
| 0.0001 | 108.0 | 1080 | 0.6777 | 0.12 | 0.15 | 0.1333 | 0.9078 |
|
164 |
+
| 0.0 | 109.0 | 1090 | 0.6683 | 0.1 | 0.15 | 0.12 | 0.9074 |
|
165 |
+
| 0.0001 | 110.0 | 1100 | 0.6622 | 0.0909 | 0.15 | 0.1132 | 0.9070 |
|
166 |
+
| 0.0003 | 111.0 | 1110 | 0.6750 | 0.08 | 0.1 | 0.0889 | 0.9057 |
|
167 |
+
| 0.0001 | 112.0 | 1120 | 0.7000 | 0.1053 | 0.1 | 0.1026 | 0.9061 |
|
168 |
+
| 0.0001 | 113.0 | 1130 | 0.7136 | 0.1053 | 0.1 | 0.1026 | 0.9046 |
|
169 |
+
| 0.0001 | 114.0 | 1140 | 0.7234 | 0.1 | 0.1 | 0.1000 | 0.9037 |
|
170 |
+
| 0.0 | 115.0 | 1150 | 0.7643 | 0.0870 | 0.1 | 0.0930 | 0.8998 |
|
171 |
+
| 0.0001 | 116.0 | 1160 | 0.7801 | 0.0769 | 0.1 | 0.0870 | 0.9002 |
|
172 |
+
| 0.0 | 117.0 | 1170 | 0.7872 | 0.0769 | 0.1 | 0.0870 | 0.9009 |
|
173 |
+
| 0.0003 | 118.0 | 1180 | 0.7597 | 0.0690 | 0.1 | 0.0816 | 0.8983 |
|
174 |
+
| 0.0002 | 119.0 | 1190 | 0.7564 | 0.0606 | 0.1 | 0.0755 | 0.8989 |
|
175 |
+
| 0.0 | 120.0 | 1200 | 0.7558 | 0.0606 | 0.1 | 0.0755 | 0.8998 |
|
176 |
+
| 0.0 | 121.0 | 1210 | 0.7566 | 0.0625 | 0.1 | 0.0769 | 0.9002 |
|
177 |
+
| 0.0 | 122.0 | 1220 | 0.7579 | 0.0606 | 0.1 | 0.0755 | 0.8991 |
|
178 |
+
| 0.0 | 123.0 | 1230 | 0.7603 | 0.0606 | 0.1 | 0.0755 | 0.8989 |
|
179 |
+
| 0.0 | 124.0 | 1240 | 0.7626 | 0.0667 | 0.1 | 0.08 | 0.8980 |
|
180 |
+
| 0.0 | 125.0 | 1250 | 0.7645 | 0.0690 | 0.1 | 0.0816 | 0.8980 |
|
181 |
+
| 0.0 | 126.0 | 1260 | 0.7666 | 0.0625 | 0.1 | 0.0769 | 0.8978 |
|
182 |
+
| 0.0 | 127.0 | 1270 | 0.7689 | 0.0645 | 0.1 | 0.0784 | 0.8976 |
|
183 |
+
| 0.0 | 128.0 | 1280 | 0.7707 | 0.0645 | 0.1 | 0.0784 | 0.8974 |
|
184 |
+
| 0.0 | 129.0 | 1290 | 0.7718 | 0.0645 | 0.1 | 0.0784 | 0.8967 |
|
185 |
+
| 0.0 | 130.0 | 1300 | 0.7730 | 0.0606 | 0.1 | 0.0755 | 0.8976 |
|
186 |
+
| 0.0 | 131.0 | 1310 | 0.7738 | 0.0606 | 0.1 | 0.0755 | 0.8989 |
|
187 |
+
| 0.0003 | 132.0 | 1320 | 0.7744 | 0.0588 | 0.1 | 0.0741 | 0.9002 |
|
188 |
+
| 0.0 | 133.0 | 1330 | 0.7762 | 0.0606 | 0.1 | 0.0755 | 0.9013 |
|
189 |
+
| 0.0 | 134.0 | 1340 | 0.7784 | 0.0606 | 0.1 | 0.0755 | 0.9037 |
|
190 |
+
| 0.0 | 135.0 | 1350 | 0.7798 | 0.0667 | 0.1 | 0.08 | 0.9048 |
|
191 |
+
| 0.0002 | 136.0 | 1360 | 0.7357 | 0.0588 | 0.1 | 0.0741 | 0.9002 |
|
192 |
+
| 0.0002 | 137.0 | 1370 | 0.6891 | 0.08 | 0.1 | 0.0889 | 0.9 |
|
193 |
+
| 0.0001 | 138.0 | 1380 | 0.6732 | 0.0769 | 0.1 | 0.0870 | 0.9065 |
|
194 |
+
| 0.0001 | 139.0 | 1390 | 0.6808 | 0.0870 | 0.1 | 0.0930 | 0.9096 |
|
195 |
+
| 0.0 | 140.0 | 1400 | 0.6845 | 0.0833 | 0.1 | 0.0909 | 0.9098 |
|
196 |
+
| 0.0 | 141.0 | 1410 | 0.6880 | 0.0870 | 0.1 | 0.0930 | 0.9096 |
|
197 |
+
| 0.0 | 142.0 | 1420 | 0.6915 | 0.0870 | 0.1 | 0.0930 | 0.9096 |
|
198 |
+
| 0.0 | 143.0 | 1430 | 0.6945 | 0.08 | 0.1 | 0.0889 | 0.9096 |
|
199 |
+
| 0.0 | 144.0 | 1440 | 0.6966 | 0.0769 | 0.1 | 0.0870 | 0.9094 |
|
200 |
+
| 0.0 | 145.0 | 1450 | 0.6986 | 0.0909 | 0.1 | 0.0952 | 0.9109 |
|
201 |
+
| 0.0 | 146.0 | 1460 | 0.7015 | 0.0952 | 0.1 | 0.0976 | 0.9109 |
|
202 |
+
| 0.0 | 147.0 | 1470 | 0.7036 | 0.1 | 0.1 | 0.1000 | 0.9113 |
|
203 |
+
| 0.0 | 148.0 | 1480 | 0.7054 | 0.1 | 0.1 | 0.1000 | 0.9113 |
|
204 |
+
| 0.0 | 149.0 | 1490 | 0.7078 | 0.1 | 0.1 | 0.1000 | 0.9113 |
|
205 |
+
| 0.0 | 150.0 | 1500 | 0.7091 | 0.1 | 0.1 | 0.1000 | 0.9113 |
|
206 |
+
| 0.0 | 151.0 | 1510 | 0.7111 | 0.1 | 0.1 | 0.1000 | 0.9113 |
|
207 |
+
| 0.0 | 152.0 | 1520 | 0.7127 | 0.1 | 0.1 | 0.1000 | 0.9113 |
|
208 |
+
| 0.0 | 153.0 | 1530 | 0.7141 | 0.1 | 0.1 | 0.1000 | 0.9113 |
|
209 |
+
| 0.0 | 154.0 | 1540 | 0.7160 | 0.1 | 0.1 | 0.1000 | 0.9113 |
|
210 |
+
| 0.0 | 155.0 | 1550 | 0.7191 | 0.1053 | 0.1 | 0.1026 | 0.9109 |
|
211 |
+
| 0.0 | 156.0 | 1560 | 0.7205 | 0.1053 | 0.1 | 0.1026 | 0.9109 |
|
212 |
+
| 0.0 | 157.0 | 1570 | 0.7217 | 0.1053 | 0.1 | 0.1026 | 0.9109 |
|
213 |
+
| 0.0 | 158.0 | 1580 | 0.7225 | 0.1 | 0.1 | 0.1000 | 0.9113 |
|
214 |
+
| 0.0 | 159.0 | 1590 | 0.7231 | 0.1 | 0.1 | 0.1000 | 0.9113 |
|
215 |
+
| 0.0 | 160.0 | 1600 | 0.7238 | 0.1 | 0.1 | 0.1000 | 0.9113 |
|
216 |
+
| 0.0 | 161.0 | 1610 | 0.7245 | 0.1 | 0.1 | 0.1000 | 0.9113 |
|
217 |
+
| 0.0 | 162.0 | 1620 | 0.7252 | 0.1 | 0.1 | 0.1000 | 0.9113 |
|
218 |
+
| 0.0 | 163.0 | 1630 | 0.7258 | 0.1 | 0.1 | 0.1000 | 0.9113 |
|
219 |
+
| 0.0 | 164.0 | 1640 | 0.7261 | 0.1 | 0.1 | 0.1000 | 0.9113 |
|
220 |
+
| 0.0 | 165.0 | 1650 | 0.7266 | 0.1 | 0.1 | 0.1000 | 0.9113 |
|
221 |
+
| 0.0 | 166.0 | 1660 | 0.7273 | 0.1 | 0.1 | 0.1000 | 0.9113 |
|
222 |
+
| 0.0 | 167.0 | 1670 | 0.7278 | 0.1 | 0.1 | 0.1000 | 0.9113 |
|
223 |
+
| 0.0 | 168.0 | 1680 | 0.7286 | 0.1 | 0.1 | 0.1000 | 0.9113 |
|
224 |
+
| 0.0 | 169.0 | 1690 | 0.7295 | 0.1 | 0.1 | 0.1000 | 0.9113 |
|
225 |
+
| 0.0 | 170.0 | 1700 | 0.7303 | 0.1 | 0.1 | 0.1000 | 0.9113 |
|
226 |
+
| 0.0 | 171.0 | 1710 | 0.7310 | 0.1 | 0.1 | 0.1000 | 0.9113 |
|
227 |
+
| 0.0 | 172.0 | 1720 | 0.7316 | 0.1 | 0.1 | 0.1000 | 0.9113 |
|
228 |
+
| 0.0002 | 173.0 | 1730 | 0.7248 | 0.1 | 0.1 | 0.1000 | 0.9107 |
|
229 |
+
| 0.0 | 174.0 | 1740 | 0.7180 | 0.0909 | 0.1 | 0.0952 | 0.9096 |
|
230 |
+
| 0.0003 | 175.0 | 1750 | 0.7154 | 0.0909 | 0.1 | 0.0952 | 0.9096 |
|
231 |
+
| 0.0 | 176.0 | 1760 | 0.7161 | 0.0909 | 0.1 | 0.0952 | 0.9094 |
|
232 |
+
| 0.0 | 177.0 | 1770 | 0.7251 | 0.0870 | 0.1 | 0.0930 | 0.9094 |
|
233 |
+
| 0.0 | 178.0 | 1780 | 0.7282 | 0.0870 | 0.1 | 0.0930 | 0.9094 |
|
234 |
+
| 0.0 | 179.0 | 1790 | 0.7297 | 0.0870 | 0.1 | 0.0930 | 0.9094 |
|
235 |
+
| 0.0 | 180.0 | 1800 | 0.7304 | 0.0870 | 0.1 | 0.0930 | 0.9094 |
|
236 |
+
| 0.0 | 181.0 | 1810 | 0.7308 | 0.0870 | 0.1 | 0.0930 | 0.9094 |
|
237 |
+
| 0.0 | 182.0 | 1820 | 0.7315 | 0.0870 | 0.1 | 0.0930 | 0.9094 |
|
238 |
+
| 0.0 | 183.0 | 1830 | 0.7334 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
|
239 |
+
| 0.0 | 184.0 | 1840 | 0.7345 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
|
240 |
+
| 0.0 | 185.0 | 1850 | 0.7349 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
|
241 |
+
| 0.0 | 186.0 | 1860 | 0.7353 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
|
242 |
+
| 0.0 | 187.0 | 1870 | 0.7356 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
|
243 |
+
| 0.0 | 188.0 | 1880 | 0.7360 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
|
244 |
+
| 0.0 | 189.0 | 1890 | 0.7365 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
|
245 |
+
| 0.0 | 190.0 | 1900 | 0.7368 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
|
246 |
+
| 0.0 | 191.0 | 1910 | 0.7370 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
|
247 |
+
| 0.0 | 192.0 | 1920 | 0.7374 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
|
248 |
+
| 0.0 | 193.0 | 1930 | 0.7375 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
|
249 |
+
| 0.0 | 194.0 | 1940 | 0.7378 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
|
250 |
+
| 0.0 | 195.0 | 1950 | 0.7379 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
|
251 |
+
| 0.0 | 196.0 | 1960 | 0.7378 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
|
252 |
+
| 0.0 | 197.0 | 1970 | 0.7381 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
|
253 |
+
| 0.0 | 198.0 | 1980 | 0.7384 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
|
254 |
+
| 0.0 | 199.0 | 1990 | 0.7385 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
|
255 |
+
| 0.0 | 200.0 | 2000 | 0.7385 | 0.0833 | 0.1 | 0.0909 | 0.9092 |
|
256 |
+
|
257 |
+
|
258 |
+
### Framework versions
|
259 |
+
|
260 |
+
- Transformers 4.31.0.dev0
|
261 |
+
- Pytorch 2.0.0
|
262 |
+
- Datasets 2.1.0
|
263 |
+
- Tokenizers 0.13.3
|