María Navas Loro commited on
Commit
522c766
·
1 Parent(s): 50dec48

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -15
README.md CHANGED
@@ -19,11 +19,11 @@ should probably proofread and complete it, then remove this comment. -->
19
 
20
  This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 0.5134
23
- - Accuracy: 0.9133
24
- - F1: 0.9133
25
- - Precision: 0.9133
26
- - Recall: 0.9133
27
 
28
  ## Model description
29
 
@@ -54,16 +54,16 @@ The following hyperparameters were used during training:
54
 
55
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
56
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
57
- | No log | 1.0 | 271 | 0.3949 | 0.8764 | 0.8764 | 0.8764 | 0.8764 |
58
- | 0.4368 | 2.0 | 542 | 0.3255 | 0.8911 | 0.8911 | 0.8911 | 0.8911 |
59
- | 0.4368 | 3.0 | 813 | 0.3350 | 0.8856 | 0.8856 | 0.8856 | 0.8856 |
60
- | 0.2996 | 4.0 | 1084 | 0.3802 | 0.9041 | 0.9041 | 0.9041 | 0.9041 |
61
- | 0.2996 | 5.0 | 1355 | 0.4169 | 0.8801 | 0.8801 | 0.8801 | 0.8801 |
62
- | 0.2226 | 6.0 | 1626 | 0.3940 | 0.9096 | 0.9096 | 0.9096 | 0.9096 |
63
- | 0.2226 | 7.0 | 1897 | 0.4621 | 0.9077 | 0.9077 | 0.9077 | 0.9077 |
64
- | 0.1437 | 8.0 | 2168 | 0.4734 | 0.9077 | 0.9077 | 0.9077 | 0.9077 |
65
- | 0.1437 | 9.0 | 2439 | 0.5134 | 0.9133 | 0.9133 | 0.9133 | 0.9133 |
66
- | 0.1006 | 10.0 | 2710 | 0.5426 | 0.9077 | 0.9077 | 0.9077 | 0.9077 |
67
 
68
 
69
  ### Framework versions
 
19
 
20
  This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.4141
23
+ - Accuracy: 0.8919
24
+ - F1: 0.8919
25
+ - Precision: 0.8919
26
+ - Recall: 0.8919
27
 
28
  ## Model description
29
 
 
54
 
55
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
56
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
57
+ | No log | 1.0 | 333 | 0.3781 | 0.8544 | 0.8544 | 0.8544 | 0.8544 |
58
+ | 0.4429 | 2.0 | 666 | 0.3295 | 0.8679 | 0.8679 | 0.8679 | 0.8679 |
59
+ | 0.4429 | 3.0 | 999 | 0.3664 | 0.8784 | 0.8784 | 0.8784 | 0.8784 |
60
+ | 0.3512 | 4.0 | 1332 | 0.4602 | 0.8649 | 0.8649 | 0.8649 | 0.8649 |
61
+ | 0.2975 | 5.0 | 1665 | 0.4721 | 0.8889 | 0.8889 | 0.8889 | 0.8889 |
62
+ | 0.2975 | 6.0 | 1998 | 0.4141 | 0.8919 | 0.8919 | 0.8919 | 0.8919 |
63
+ | 0.2499 | 7.0 | 2331 | 0.4054 | 0.8889 | 0.8889 | 0.8889 | 0.8889 |
64
+ | 0.2132 | 8.0 | 2664 | 0.4878 | 0.8829 | 0.8829 | 0.8829 | 0.8829 |
65
+ | 0.2132 | 9.0 | 2997 | 0.4867 | 0.8904 | 0.8904 | 0.8904 | 0.8904 |
66
+ | 0.1812 | 10.0 | 3330 | 0.5339 | 0.8889 | 0.8889 | 0.8889 | 0.8889 |
67
 
68
 
69
  ### Framework versions