María Navas Loro commited on
Commit
b101ba1
·
1 Parent(s): 4d2596a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +260 -0
README.md ADDED
@@ -0,0 +1,260 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: roberta-finetuned-token-reqadjinsiders
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # roberta-finetuned-token-reqadjinsiders
14
+
15
+ This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on an unknown dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.0597
18
+ - F1 B-cadj: 0
19
+ - F1 I-cadj: 0.4734
20
+ - F1 B-peso: 0
21
+ - F1 I-peso: 0
22
+ - Macro F1: 0.1183
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 0.0002
42
+ - train_batch_size: 8
43
+ - eval_batch_size: 8
44
+ - seed: 42
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - num_epochs: 200
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | F1 B-cadj | F1 I-cadj | F1 B-peso | F1 I-peso | Macro F1 |
52
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:---------:|:---------:|:---------:|:--------:|
53
+ | 0.2188 | 1.0 | 10 | 0.0758 | 0 | 0 | 0 | 0 | 0.0 |
54
+ | 0.0711 | 2.0 | 20 | 0.0678 | 0 | 0 | 0 | 0 | 0.0 |
55
+ | 0.0656 | 3.0 | 30 | 0.0639 | 0 | 0 | 0 | 0 | 0.0 |
56
+ | 0.0634 | 4.0 | 40 | 0.0629 | 0 | 0 | 0 | 0 | 0.0 |
57
+ | 0.0624 | 5.0 | 50 | 0.0615 | 0 | 0 | 0 | 0 | 0.0 |
58
+ | 0.0602 | 6.0 | 60 | 0.0598 | 0 | 0 | 0 | 0 | 0.0 |
59
+ | 0.0573 | 7.0 | 70 | 0.0628 | 0 | 0 | 0 | 0 | 0.0 |
60
+ | 0.0537 | 8.0 | 80 | 0.0531 | 0 | 0.1373 | 0 | 0 | 0.0343 |
61
+ | 0.0595 | 9.0 | 90 | 0.0565 | 0 | 0 | 0 | 0 | 0.0 |
62
+ | 0.0435 | 10.0 | 100 | 0.0659 | 0 | 0 | 0 | 0 | 0.0 |
63
+ | 0.0507 | 11.0 | 110 | 0.0558 | 0 | 0.4549 | 0 | 0 | 0.1137 |
64
+ | 0.0313 | 12.0 | 120 | 0.0561 | 0 | 0.3955 | 0 | 0 | 0.0989 |
65
+ | 0.0278 | 13.0 | 130 | 0.0629 | 0 | 0.3756 | 0 | 0 | 0.0939 |
66
+ | 0.0248 | 14.0 | 140 | 0.0634 | 0 | 0.3726 | 0 | 0 | 0.0932 |
67
+ | 0.0282 | 15.0 | 150 | 0.0607 | 0 | 0.3303 | 0 | 0 | 0.0826 |
68
+ | 0.0302 | 16.0 | 160 | 0.0628 | 0 | 0.4428 | 0 | 0 | 0.1107 |
69
+ | 0.0205 | 17.0 | 170 | 0.0551 | 0 | 0.3855 | 0 | 0 | 0.0964 |
70
+ | 0.0186 | 18.0 | 180 | 0.0627 | 0 | 0.4419 | 0 | 0 | 0.1105 |
71
+ | 0.0171 | 19.0 | 190 | 0.0721 | 0 | 0.3524 | 0 | 0 | 0.0881 |
72
+ | 0.0152 | 20.0 | 200 | 0.0574 | 0 | 0.3281 | 0 | 0 | 0.0820 |
73
+ | 0.0152 | 21.0 | 210 | 0.0597 | 0 | 0.1515 | 0 | 0 | 0.0379 |
74
+ | 0.0157 | 22.0 | 220 | 0.0675 | 0 | 0.3633 | 0 | 0 | 0.0908 |
75
+ | 0.0135 | 23.0 | 230 | 0.0728 | 0 | 0.3135 | 0 | 0 | 0.0784 |
76
+ | 0.0128 | 24.0 | 240 | 0.0703 | 0 | 0.4114 | 0 | 0 | 0.1028 |
77
+ | 0.0126 | 25.0 | 250 | 0.0605 | 0 | 0.3695 | 0 | 0 | 0.0924 |
78
+ | 0.0228 | 26.0 | 260 | 0.0490 | 0 | 0 | 0 | 0 | 0.0 |
79
+ | 0.0266 | 27.0 | 270 | 0.0819 | 0 | 0.2214 | 0 | 0 | 0.0554 |
80
+ | 0.0512 | 28.0 | 280 | 0.0598 | 0 | 0 | 0 | 0 | 0.0 |
81
+ | 0.0625 | 29.0 | 290 | 0.0595 | 0 | 0 | 0 | 0 | 0.0 |
82
+ | 0.0601 | 30.0 | 300 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
83
+ | 0.0595 | 31.0 | 310 | 0.0594 | 0 | 0 | 0 | 0 | 0.0 |
84
+ | 0.0597 | 32.0 | 320 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
85
+ | 0.0594 | 33.0 | 330 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
86
+ | 0.0599 | 34.0 | 340 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
87
+ | 0.0601 | 35.0 | 350 | 0.0599 | 0 | 0 | 0 | 0 | 0.0 |
88
+ | 0.0597 | 36.0 | 360 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
89
+ | 0.0595 | 37.0 | 370 | 0.0594 | 0 | 0 | 0 | 0 | 0.0 |
90
+ | 0.0595 | 38.0 | 380 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
91
+ | 0.0594 | 39.0 | 390 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
92
+ | 0.0591 | 40.0 | 400 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
93
+ | 0.0595 | 41.0 | 410 | 0.0594 | 0 | 0 | 0 | 0 | 0.0 |
94
+ | 0.0594 | 42.0 | 420 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
95
+ | 0.0593 | 43.0 | 430 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
96
+ | 0.0593 | 44.0 | 440 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
97
+ | 0.0592 | 45.0 | 450 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
98
+ | 0.0593 | 46.0 | 460 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
99
+ | 0.0593 | 47.0 | 470 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
100
+ | 0.0594 | 48.0 | 480 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
101
+ | 0.0596 | 49.0 | 490 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
102
+ | 0.0594 | 50.0 | 500 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
103
+ | 0.0595 | 51.0 | 510 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
104
+ | 0.0591 | 52.0 | 520 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
105
+ | 0.0593 | 53.0 | 530 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
106
+ | 0.0597 | 54.0 | 540 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
107
+ | 0.0593 | 55.0 | 550 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
108
+ | 0.0601 | 56.0 | 560 | 0.0594 | 0 | 0 | 0 | 0 | 0.0 |
109
+ | 0.0595 | 57.0 | 570 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
110
+ | 0.0595 | 58.0 | 580 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
111
+ | 0.0592 | 59.0 | 590 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
112
+ | 0.0593 | 60.0 | 600 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
113
+ | 0.0591 | 61.0 | 610 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
114
+ | 0.0594 | 62.0 | 620 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
115
+ | 0.0593 | 63.0 | 630 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
116
+ | 0.0595 | 64.0 | 640 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
117
+ | 0.0592 | 65.0 | 650 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
118
+ | 0.0581 | 66.0 | 660 | 0.0580 | 0 | 0 | 0 | 0 | 0.0 |
119
+ | 0.0503 | 67.0 | 670 | 0.0608 | 0 | 0 | 0 | 0 | 0.0 |
120
+ | 0.0338 | 68.0 | 680 | 0.0653 | 0 | 0.2763 | 0 | 0 | 0.0691 |
121
+ | 0.0311 | 69.0 | 690 | 0.0727 | 0 | 0.3019 | 0 | 0 | 0.0755 |
122
+ | 0.0305 | 70.0 | 700 | 0.0683 | 0 | 0.3515 | 0 | 0 | 0.0879 |
123
+ | 0.0236 | 71.0 | 710 | 0.0757 | 0 | 0.2626 | 0 | 0 | 0.0656 |
124
+ | 0.0261 | 72.0 | 720 | 0.0597 | 0 | 0.4734 | 0 | 0 | 0.1183 |
125
+ | 0.0242 | 73.0 | 730 | 0.0621 | 0 | 0.4411 | 0 | 0 | 0.1103 |
126
+ | 0.0293 | 74.0 | 740 | 0.0722 | 0 | 0.3305 | 0 | 0 | 0.0826 |
127
+ | 0.0465 | 75.0 | 750 | 0.0600 | 0 | 0 | 0 | 0 | 0.0 |
128
+ | 0.0598 | 76.0 | 760 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
129
+ | 0.0594 | 77.0 | 770 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
130
+ | 0.0594 | 78.0 | 780 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
131
+ | 0.0602 | 79.0 | 790 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
132
+ | 0.0598 | 80.0 | 800 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
133
+ | 0.0595 | 81.0 | 810 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
134
+ | 0.0591 | 82.0 | 820 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
135
+ | 0.0591 | 83.0 | 830 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
136
+ | 0.0591 | 84.0 | 840 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
137
+ | 0.0594 | 85.0 | 850 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
138
+ | 0.0592 | 86.0 | 860 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
139
+ | 0.0597 | 87.0 | 870 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
140
+ | 0.0593 | 88.0 | 880 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
141
+ | 0.06 | 89.0 | 890 | 0.0595 | 0 | 0 | 0 | 0 | 0.0 |
142
+ | 0.0591 | 90.0 | 900 | 0.0594 | 0 | 0 | 0 | 0 | 0.0 |
143
+ | 0.0592 | 91.0 | 910 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
144
+ | 0.0592 | 92.0 | 920 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
145
+ | 0.0591 | 93.0 | 930 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
146
+ | 0.0592 | 94.0 | 940 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
147
+ | 0.0592 | 95.0 | 950 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
148
+ | 0.0592 | 96.0 | 960 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
149
+ | 0.0591 | 97.0 | 970 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
150
+ | 0.0596 | 98.0 | 980 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
151
+ | 0.0593 | 99.0 | 990 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
152
+ | 0.0594 | 100.0 | 1000 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
153
+ | 0.0596 | 101.0 | 1010 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
154
+ | 0.0594 | 102.0 | 1020 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
155
+ | 0.0593 | 103.0 | 1030 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
156
+ | 0.0591 | 104.0 | 1040 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
157
+ | 0.059 | 105.0 | 1050 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
158
+ | 0.0593 | 106.0 | 1060 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
159
+ | 0.0595 | 107.0 | 1070 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
160
+ | 0.0599 | 108.0 | 1080 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
161
+ | 0.0598 | 109.0 | 1090 | 0.0594 | 0 | 0 | 0 | 0 | 0.0 |
162
+ | 0.0595 | 110.0 | 1100 | 0.0594 | 0 | 0 | 0 | 0 | 0.0 |
163
+ | 0.0594 | 111.0 | 1110 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
164
+ | 0.0596 | 112.0 | 1120 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
165
+ | 0.0594 | 113.0 | 1130 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
166
+ | 0.0592 | 114.0 | 1140 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
167
+ | 0.0594 | 115.0 | 1150 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
168
+ | 0.059 | 116.0 | 1160 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
169
+ | 0.0594 | 117.0 | 1170 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
170
+ | 0.0594 | 118.0 | 1180 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
171
+ | 0.0593 | 119.0 | 1190 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
172
+ | 0.0591 | 120.0 | 1200 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
173
+ | 0.0591 | 121.0 | 1210 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
174
+ | 0.0591 | 122.0 | 1220 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
175
+ | 0.0592 | 123.0 | 1230 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
176
+ | 0.0592 | 124.0 | 1240 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
177
+ | 0.0592 | 125.0 | 1250 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
178
+ | 0.059 | 126.0 | 1260 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
179
+ | 0.0592 | 127.0 | 1270 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
180
+ | 0.0595 | 128.0 | 1280 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
181
+ | 0.0592 | 129.0 | 1290 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
182
+ | 0.059 | 130.0 | 1300 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
183
+ | 0.059 | 131.0 | 1310 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
184
+ | 0.0593 | 132.0 | 1320 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
185
+ | 0.0594 | 133.0 | 1330 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
186
+ | 0.0592 | 134.0 | 1340 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
187
+ | 0.0596 | 135.0 | 1350 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
188
+ | 0.0594 | 136.0 | 1360 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
189
+ | 0.0596 | 137.0 | 1370 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
190
+ | 0.0592 | 138.0 | 1380 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
191
+ | 0.0591 | 139.0 | 1390 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
192
+ | 0.0595 | 140.0 | 1400 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
193
+ | 0.0591 | 141.0 | 1410 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
194
+ | 0.0594 | 142.0 | 1420 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
195
+ | 0.0591 | 143.0 | 1430 | 0.0593 | 0 | 0 | 0 | 0 | 0.0 |
196
+ | 0.0591 | 144.0 | 1440 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
197
+ | 0.059 | 145.0 | 1450 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
198
+ | 0.059 | 146.0 | 1460 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
199
+ | 0.059 | 147.0 | 1470 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
200
+ | 0.0592 | 148.0 | 1480 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
201
+ | 0.0592 | 149.0 | 1490 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
202
+ | 0.0592 | 150.0 | 1500 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
203
+ | 0.0591 | 151.0 | 1510 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
204
+ | 0.0592 | 152.0 | 1520 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
205
+ | 0.0591 | 153.0 | 1530 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
206
+ | 0.0591 | 154.0 | 1540 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
207
+ | 0.059 | 155.0 | 1550 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
208
+ | 0.0591 | 156.0 | 1560 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
209
+ | 0.0591 | 157.0 | 1570 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
210
+ | 0.0597 | 158.0 | 1580 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
211
+ | 0.0592 | 159.0 | 1590 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
212
+ | 0.0592 | 160.0 | 1600 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
213
+ | 0.0597 | 161.0 | 1610 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
214
+ | 0.0592 | 162.0 | 1620 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
215
+ | 0.0594 | 163.0 | 1630 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
216
+ | 0.0595 | 164.0 | 1640 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
217
+ | 0.0597 | 165.0 | 1650 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
218
+ | 0.0592 | 166.0 | 1660 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
219
+ | 0.0591 | 167.0 | 1670 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
220
+ | 0.0593 | 168.0 | 1680 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
221
+ | 0.0597 | 169.0 | 1690 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
222
+ | 0.0591 | 170.0 | 1700 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
223
+ | 0.059 | 171.0 | 1710 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
224
+ | 0.0592 | 172.0 | 1720 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
225
+ | 0.0592 | 173.0 | 1730 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
226
+ | 0.059 | 174.0 | 1740 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
227
+ | 0.0591 | 175.0 | 1750 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
228
+ | 0.0589 | 176.0 | 1760 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
229
+ | 0.0591 | 177.0 | 1770 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
230
+ | 0.0591 | 178.0 | 1780 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
231
+ | 0.0592 | 179.0 | 1790 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
232
+ | 0.0592 | 180.0 | 1800 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
233
+ | 0.059 | 181.0 | 1810 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
234
+ | 0.0591 | 182.0 | 1820 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
235
+ | 0.059 | 183.0 | 1830 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
236
+ | 0.0592 | 184.0 | 1840 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
237
+ | 0.0593 | 185.0 | 1850 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
238
+ | 0.0591 | 186.0 | 1860 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
239
+ | 0.0591 | 187.0 | 1870 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
240
+ | 0.0598 | 188.0 | 1880 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
241
+ | 0.0591 | 189.0 | 1890 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
242
+ | 0.0591 | 190.0 | 1900 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
243
+ | 0.0592 | 191.0 | 1910 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
244
+ | 0.0599 | 192.0 | 1920 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
245
+ | 0.0593 | 193.0 | 1930 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
246
+ | 0.0595 | 194.0 | 1940 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
247
+ | 0.0593 | 195.0 | 1950 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
248
+ | 0.0592 | 196.0 | 1960 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
249
+ | 0.059 | 197.0 | 1970 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
250
+ | 0.0589 | 198.0 | 1980 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
251
+ | 0.0592 | 199.0 | 1990 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
252
+ | 0.0589 | 200.0 | 2000 | 0.0592 | 0 | 0 | 0 | 0 | 0.0 |
253
+
254
+
255
+ ### Framework versions
256
+
257
+ - Transformers 4.30.0.dev0
258
+ - Pytorch 2.0.0
259
+ - Datasets 2.1.0
260
+ - Tokenizers 0.13.3