Feature Extraction
Transformers
Safetensors
ModularStarEncoder
custom_code
File size: 14,762 Bytes
c88a1b1
 
733380e
c88a1b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151f61d
 
 
 
c88a1b1
151f61d
c88a1b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
from transformers import  Starcoder2Model
import sys
from .config import ModularStarEncoderConfig
import os
from dataclasses import dataclass
from typing import Optional, Tuple, Union, List
import sys
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import  CrossEntropyLoss
from transformers.activations import ACT2FN
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
    ModelOutput,
    logging,

)

logger = logging.get_logger(__name__)

class StarEncoder2PreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = ModularStarEncoderConfig
    base_model_prefix = "ModularStarEncoder"
    model_type = "ModularStarEncoder"
    supports_gradient_checkpointing = True
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_cache_class = True



    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

class StarEncoder2Pooler(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        # We "pool" the model by simply taking the hidden state corresponding
        # to the last token.
        last_token_tensor = hidden_states[:, -1]
        pooled_output = self.dense(last_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output

@dataclass
class ModularStarEncoderOutput(ModelOutput):
    """
    Output type of [`BertForPreTraining`].

    Args:
        loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
            Total loss as the sum of the masked language modeling loss and the next sequence prediction
            (classification) loss.
        prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
            Prediction scores of the in context classification (classification) head (scores of True/False continuation
            before SoftMax).
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    projected_pooled_normalized: Optional[List[torch.FloatTensor]] = None
    raw_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None











    def forward(self, sequence_output, pooled_output,idx_layer: Optional[torch.Tensor] = None):
        if self.is_matryoshka:
            device_sequence = sequence_output.get_device()
            if device_sequence<0:
                device_sequence = "cpu"
            prediction_scores = self.predictions(torch.cat([sequence_output , self.conditional_embeddings(torch.tensor(idx_layer,device=device_sequence).int()).expand(sequence_output.size()[0],sequence_output.size()[1],-1)],dim=-1))
            seq_relationship_score = self.seq_relationship(torch.cat([pooled_output , self.conditional_embeddings(torch.tensor(idx_layer,device=device_sequence).int()).expand(pooled_output.size()[0],-1)],dim=-1))
        else:
            prediction_scores = self.predictions(sequence_output)
            seq_relationship_score = self.seq_relationship(pooled_output)
        return prediction_scores, seq_relationship_score


def normalize(my_tensor):
    embedding_norms = my_tensor.norm(dim=0)

    normalizing_factor = torch.where(  # Only normalize embeddings with norm > 1.0.
        embedding_norms > 1.0, embedding_norms, torch.tensor(1)
    )

    normalized_tensor = my_tensor / normalizing_factor
    return normalized_tensor
def pooling(x: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
    """Pools a batch of vector sequences into a batch of vector global representations.
    It does so by taking the average representation of the sequence, as indicated by the mask.

    Args:
        x (torch.Tensor): Batch of vector sequences with shape [B, T, F].
        mask (torch.Tensor): Batch of masks with shape [B, T].

    Returns:
        torch.Tensor: Pooled version of the input batch with shape [B, F].
    """

    # Expand the mask to match the feature dimensions for proper masking
    mask_expanded = mask.unsqueeze(-1)  # Shape [B, T, 1]

    # Apply the mask to the input tensor
    masked_x = x * mask_expanded  # Shape [B, T, F]
    # Sum along the time dimension
    sum_x = masked_x.sum(dim=1)  # Shape [B, F]
    # Calculate the length of valid (non-padded) elements
    valid_lengths = mask.sum(dim=1).clamp(min=1).unsqueeze(-1)  # Shape [B, 1]
    # Calculate the average pooling, avoiding division by zero
    pooled_x = sum_x / valid_lengths  # Shape [B, F]

    return pooled_x

def pool_and_normalize(
    features_sequence: torch.Tensor,
    attention_masks: torch.Tensor,
    return_norms: bool = False,
) -> Union[torch.Tensor, List[torch.Tensor]]:
    """Temporal ooling of sequences of vectors and projection onto the unit sphere.

    Args:
        features_sequence (torch.Tensor): Inpute features with shape [B, T, F].
        attention_masks (torch.Tensor): Pooling masks with shape [B, T, F].
        return_norms (bool, optional): Whether to additionally return the norms. Defaults to False.

    Returns:
        Union[torch.Tensor, List[torch.Tensor]]: Pooled and normalized vectors with shape [B, F].
    """

    pooled_embeddings = pooling(features_sequence, attention_masks)
    embedding_norms = pooled_embeddings.norm(dim=1)

    normalizing_factor = torch.where(  # Only normalize embeddings with norm > 1.0.
        embedding_norms > 1.0, embedding_norms, torch.ones_like(embedding_norms)
    )

    pooled_normalized_embeddings = pooled_embeddings / normalizing_factor[:, None]

    if return_norms:
        return pooled_normalized_embeddings, embedding_norms
    else:
        return pooled_normalized_embeddings

def get_pooling_mask(
    input_ids: torch.Tensor, sep_token_id: Union[int, float]
) -> torch.Tensor:
    """Gets pooling masks. For a sequence of input tokens, the mask will be
    a sequence of zeros up until the first [SEP] occurrence, and 1 after that.

    Args:
        input_ids (torch.Tensor): Batch of input ids with shape [B, T].
        sep_token_id (Union[int, float]): Id for [SEP] token.

    Returns:
        torch.Tensor: Batch of pooling masks with shape [B, T]
    """
    # idx indicates the first occurrence of sep_token_id per along dim 0 of input_ids
    idx = (input_ids == sep_token_id).float().flip(1).argmax(1)

    idx = input_ids.size(-1)-idx-1

    repeated_idx = idx.unsqueeze(1).repeat(1, input_ids.size(1))

    DEVICE = input_ids.get_device()

    if DEVICE<0:
        DEVICE = "cpu"
    ranges = torch.arange(input_ids.size(1)).repeat(input_ids.size(0), 1)
    ranges = ranges.to(DEVICE)

    pooling_mask = (repeated_idx <= ranges).long()

    return pooling_mask

def adapt_model(model,config,till_layer:27):
    model = model.starEncoder2

    encoder_config = config
    layers = encoder_config.matryoshka_layers
    feature_dim = encoder_config.hidden_size

    model.projection_heads = torch.nn.ModuleList()
    if till_layer:
        print(f"ATTENTION: till layer is on, you are pruning the model keeping just the first {till_layer} layers")
        model.layers = model.layers[:till_layer]
        model.projection_heads.append(torch.nn.Sequential(
                    torch.nn.Linear(feature_dim, feature_dim),
                    torch.nn.LeakyReLU(),
                    torch.nn.Linear(feature_dim, feature_dim),
                ))
    else:
        for layer in layers:
            model.projection_heads.append(torch.nn.Sequential(
                    torch.nn.Linear(feature_dim, feature_dim),
                    torch.nn.LeakyReLU(),
                    torch.nn.Linear(feature_dim, feature_dim),
                ))
                #setting off causal masking
    for layer in model.layers:
        layer.self_attn.is_causal=False

    model.temperature_coef = torch.nn.Parameter(torch.Tensor([10.0]),requires_grad=False)

    return model

class ModularStarEncoder(StarEncoder2PreTrainedModel):
    _tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
    config_class = ModularStarEncoderConfig
    def __init__(self, config):
        super().__init__(config)
        self.model_type = "ModularStarEncoder"
        for element in dir(config):
            value = getattr(config, element)  # Get the attribute value
            if (isinstance(value, tuple) or isinstance(value, list)) and len(value)>0:
                setattr(config, element, value[0])
        self.layer_matryoshka_loss = config.layer_matryoshka_loss
        self.matryoshka_layers = config.matryoshka_layers


        self.starEncoder2 = Starcoder2Model(config)


        #setting off causal masking
        for layer in self.starEncoder2.layers:
            layer.self_attn.is_causal=False
        # Initialize weights and apply final processing
        self.post_init()
        self.till_layer= 18
        self.starEncoder2 = adapt_model(self ,config=config,till_layer=self.till_layer)





    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        #token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        next_sentence_label: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        sep_token_id:Optional[int] = 49152,
    ) -> Union[Tuple[torch.Tensor], ModularStarEncoderOutput]:
        r"""
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
                config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked),
                the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
            next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                This label is assigned to the in context loss:
                - 0 indicates sequence B belongs to the same repository of A,
                - 1 indicates sequence B is a random repository.
            kwargs (`Dict[str, any]`, optional, defaults to *{}*):
                Used to hide legacy arguments that have been deprecated.


        """

        source_embedding = self.starEncoder2(
                input_ids,
                attention_mask=attention_mask,
                position_ids=position_ids,
                inputs_embeds=inputs_embeds,
                output_attentions=output_attentions,
                output_hidden_states=True,
                return_dict=True,
            )


        DEVICE = source_embedding.hidden_states[-1].get_device()
        if DEVICE<0:
            DEVICE = "cpu"

        try:
            projection_fn = self.starEncoder2.module.projection_heads
            temp_coef = self.starEncoder2.module.temperature_coef
        except AttributeError:
            projection_fn = self.starEncoder2.projection_heads
            temp_coef = self.starEncoder2.temperature_coef

        for head in projection_fn:
            head.to(DEVICE)
        temp_coef.to(DEVICE)




        pooling_mask_source_targtes = get_pooling_mask(
                input_ids, sep_token_id
            )  # Pooling masks indicate the second [SEP] occurrence, 0 till SEP, then all ones.

        if self.till_layer:
            self.matryoshka_layers=[self.till_layer]

        pooled_and_normalized = []
        for idx,matr_layer in enumerate(self.matryoshka_layers):
            source_embedding_proj = projection_fn[idx](source_embedding.hidden_states[matr_layer])

            normalized_source_embedding, embedding_norms = pool_and_normalize(
                        source_embedding_proj,
                        pooling_mask_source_targtes,
                        return_norms=True,
                    )
            
            pooled_and_normalized.append(normalized_source_embedding)

        if not self.till_layer:
            return ModularStarEncoderOutput(
                projected_pooled_normalized = pooled_and_normalized,
                raw_hidden_states=source_embedding.hidden_states,
                attentions=source_embedding.attentions,
            )
        else:
            return ModularStarEncoderOutput(
                projected_pooled_normalized = pooled_and_normalized[0],
                raw_hidden_states=source_embedding.hidden_states,
                attentions=source_embedding.attentions,
            )