--- library_name: transformers datasets: - bigcode/the-stack-v2 - modularStarEncoder/SynthCode2Code2NL-neardedup license: bigcode-openrail-m base_model: - modularStarEncoder/ModularStarEncoder --- # ModularStarEncoder-550M Fine-Tuned model ModularStarEncoder-finetuned-18 is an encoder built on top of [ModularStarEncoder-1B Pre-trained](https://huggingface.co/andreagurioli1995/ModularStarEncoder) on [SynthCode2Code2NL](https://huggingface.co/datasets/andreagurioli1995/SynthCode2Code2NL-neardedup). ModularStarEncoder fine-tuned-18 is an encoder for code-to-code and text-to-code retrieval tasks, enabling the end user to select the model size that meets their memory and computational constraints. We built ModularStarEncoder on top of [StarCoder-2](https://huggingface.co/bigcode/starcoder2-15b), reducing its size from 15B to 1B parameters in bfloat16. This version contains only the first 18 layers of ModularStarEncoder-finetuned, with the related projection head. We have released this version to enhance the model's usability by allowing users to download only the desired size. The model is finetuned with [CLIP objective](https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/loss.py). ModularStarEncoder fine-tuned works with instruction prompts; to get the most out of the model, embed the task in the input. The How to Use section below provides more details. - **Paper:** [One Model to Train them All: Hierarchical Self-Distillation for Enhanced Early Layer Embeddings](https://arxiv.org/abs/2503.03008) - **Languages:** English, Go, Ruby, Python, Java, C++, PHP, C, JavaScript - **Different sizes:** [Layer 4](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-4), [Layer 9](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-9), [Layer 18](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-18), [Layer 27](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-27), [Layer 36](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned) ### How to use ```python from transformers import AutoModel from transformers import AutoTokenizer #import the model model = AutoModel.from_pretrained("andreagurioli1995/ModularStarEncoder-finetuned-18", trust_remote_code=True) #import the tokenizer, the tokenizer applies LEFT padding! tokenizer = AutoTokenizer.from_pretrained("andreagurioli1995/ModularStarEncoder-finetuned-18") language = "yourlanguagelowercased" #instruction in case of code embedding in a code language instruction_code = f"Represent this {language} code snippet for retrieval:" #instruction in case of code embedding in English instruction_natural_language = "Represent this code description for retrieving supporting snippets of code:" code_snippet = "your code to embed here" #You should follow this pattern to embed a snippet of code or natural language queries sentence = f"{tokenizer.sep_token}{instruction_code}{tokenizer.sep_token}{code_snippet}{tokenizer.cls_token}" #Tokenizing your sentence tokenized_sentence = tokenizer(sentence, return_tensors="pt",truncation=True, max_length=2048) #Embedding the tokenized sentence embedded_sentence = model(**tokenized_sentence) ``` You will get as an output three elements: - projected_pooled_normalized: a list of the projected, pooled, and normalized embeddings from the five exit points; - raw_hidden_states: raw representation from all the hidden states of the model, without pooling, normalization, and projection - attentions: attention scores from the encoder ### Training We fine-tuned ModularStarEncoder with a batch size of 2048 contrastive samples for 20,000 training steps. The pre-training and fine-tuning were conducted on 512 NVIDIA Ampere (64GB) GPUs using the [Leonardo](https://arxiv.org/abs/2307.16885) supercomputer, requiring 450,000 GPU working hours. | Hyperparameter | Value | |--------------------------|-----------| | Hidden size | 1024 | | Max. position embeddings | 2048 | | Num. of attention heads | 12 | | Num. of key values heads | 4 | | Num. of hidden layers | 36 | | Attention | GQA | | Num. of parameters | ≈1B | |Loss function |CLIP loss | |Multi-layer loss | yes | ### Evaluation Here we briefly show our codeSearchNet (codeXGLUE) results between different layers; for full results over text-to-code and code-to-code refer to the article: | Layer | Avg. MRR | |--------------------------|-----------| | [Layer 4](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-4) | 73.2 | | [Layer 9](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-9) | 77.3 | | [Layer 18](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-18)* | 81.0 | | [Layer 27](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-27) | 80.3 | | [Layer 36](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned) | 79.6 | - (* size and corresponding projection head present in this model) ## Licence The model is licensed under the BigCode OpenRAIL-M v1 license agreement. You can find the full agreement [here](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement). # Citation ``` @article{gurioli2025modeltrainallhierarchical, title={One Model to Train them All: Hierarchical Self-Distillation for Enhanced Early Layer Embeddings}, author={Andrea Gurioli and Federico Pennino and João Monteiro and Maurizio Gabbrielli}, year={2025}, eprint={2503.03008}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2503.03008}, } ```