Feature Extraction
Transformers
Safetensors
ModularStarEncoder
custom_code
andreagurioli1995 commited on
Commit
5110fdf
·
verified ·
1 Parent(s): 6a6d4c8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -22,7 +22,7 @@ We have released this version to enhance the model's usability by allowing users
22
  The model is finetuned with [CLIP objective](https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/loss.py)
23
  ModularStarEncoder fine-tuned works with instruction prompts; to get the most out of the model, embed the task in the input. The How to Use section below provides more details.
24
 
25
- - **Paper:** [One Model to Train them All: Hierarchical Self-Distillation for Enhanced Early Layer Embeddings](https://arxiv.org/abs/2503.03008)
26
  - **Languages:** English, Go, Ruby, Python, Java, C++, PHP, C, JavaScript
27
  - **Different sizes:** [Layer 4](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-4), [Layer 9](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-9), [Layer 18](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-18), [Layer 27](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-27), [Layer 36](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned)
28
 
@@ -102,8 +102,8 @@ The model is licensed under the BigCode OpenRAIL-M v1 license agreement. You can
102
 
103
  # Citation
104
  ```
105
- @article{gurioli2025modeltrainallhierarchical,
106
- title={One Model to Train them All: Hierarchical Self-Distillation for Enhanced Early Layer Embeddings},
107
  author={Andrea Gurioli and Federico Pennino and João Monteiro and Maurizio Gabbrielli},
108
  year={2025},
109
  eprint={2503.03008},
 
22
  The model is finetuned with [CLIP objective](https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/loss.py)
23
  ModularStarEncoder fine-tuned works with instruction prompts; to get the most out of the model, embed the task in the input. The How to Use section below provides more details.
24
 
25
+ - **Paper:** [MoSE: Hierarchical Self-Distillation Enhances Early Layer Embeddings](https://arxiv.org/abs/2503.03008)
26
  - **Languages:** English, Go, Ruby, Python, Java, C++, PHP, C, JavaScript
27
  - **Different sizes:** [Layer 4](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-4), [Layer 9](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-9), [Layer 18](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-18), [Layer 27](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-27), [Layer 36](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned)
28
 
 
102
 
103
  # Citation
104
  ```
105
+ @article{gurioli2025mosehierarchicalselfdistillationenhances,
106
+ title={MoSE: Hierarchical Self-Distillation Enhances Early Layer Embeddings},
107
  author={Andrea Gurioli and Federico Pennino and João Monteiro and Maurizio Gabbrielli},
108
  year={2025},
109
  eprint={2503.03008},