File size: 2,006 Bytes
5170a2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
model-index:
- name: t5-small-squad-qg-v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-squad-qg-v2

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6608

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.6867        | 0.73  | 500  | 1.9647          |
| 2.0737        | 1.46  | 1000 | 1.8141          |
| 1.9364        | 2.19  | 1500 | 1.7515          |
| 1.8745        | 2.92  | 2000 | 1.7215          |
| 1.8282        | 3.65  | 2500 | 1.7042          |
| 1.803         | 4.38  | 3000 | 1.6913          |
| 1.7797        | 5.11  | 3500 | 1.6796          |
| 1.7592        | 5.84  | 4000 | 1.6749          |
| 1.7435        | 6.57  | 4500 | 1.6697          |
| 1.7427        | 7.3   | 5000 | 1.6667          |
| 1.7245        | 8.04  | 5500 | 1.6614          |
| 1.7211        | 8.77  | 6000 | 1.6621          |
| 1.7137        | 9.5   | 6500 | 1.6608          |


### Framework versions

- Transformers 4.38.1
- Pytorch 2.1.2
- Datasets 2.13.1
- Tokenizers 0.15.2