mojemai's picture
Upload PPO LunarLander-v2 trained agent
b726239
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f53638808b0>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5363880940>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f53638809d0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5363880a60>",
"_build": "<function ActorCriticPolicy._build at 0x7f5363880af0>",
"forward": "<function ActorCriticPolicy.forward at 0x7f5363880b80>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5363880c10>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5363880ca0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f5363880d30>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5363880dc0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5363880e50>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5363880ee0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7f5363881940>"
},
"verbose": 1,
"policy_kwargs": {},
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1682950124230539533,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWV1QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbEN7y489C72rxJvO2YDT2NYSi9fkToPQAAgD8AAIA/ZmTqvbWCkz96vBa+PR3ZvtVWEr7dWEg7AAAAAAAAAABmvVM9I8eaP97p7D19wPK+WVsmPX6IXT0AAAAAAAAAADN/BD6qw5g+MHC5vgOEr77INNa9F3uSPAAAAAAAAAAAALLRvTyN1D4EI609EnGUvgUS/Dx2oC49AAAAAAAAAABNw2q9FCKOuvvq1LYr1tKxhpMcO3W9+TUAAIA/AACAP2YYqbwFVkc/WPcdvFMan76AJyW8z/uJPQAAAAAAAAAAbZpCPtdkHD9Bczy+VJWUvose1j3Ge429AAAAAAAAAAAasuU9Mx+hPtdkmL7SVom+KnljvYGFKD0AAAAAAAAAALMYC717WKu6zP4CvZpvJT2uf5o7zkMMvgAAgD8AAIA/mvNzPMX+oDyWkSW+/kNyvunjgb2F5qi9AAAAAAAAAABmWtq7rhm4uiUXzTZePscxkl+/uI1k6LUAAIA/AACAPzOfxLzDLls/s1VQveo7774XJxu9I9ZUPQAAAAAAAAAAM6a4vHyQnD86WQi+yxvpvpoADL1nARW9AAAAAAAAAAC68Fk+Rp86P+pnRr61N66+Ks7SPQ2eb7wAAAAAAAAAAPO+iD7shgc/kVSwvvQprb478RE+eYyEvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"_stats_window_size": 100,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVaBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIu7VMhqNScECUhpRSlIwBbJRNWgGMAXSUR0CDd+9ytFKDdX2UKGgGaAloD0MIyxEykGcPSUCUhpRSlGgVS81oFkdAg3gucMEzPHV9lChoBmgJaA9DCHl1jgEZQHFAlIaUUpRoFU2TAWgWR0CDeSBFNL13dX2UKGgGaAloD0MIfSWQEvslcECUhpRSlGgVS+doFkdAg3pExh2GI3V9lChoBmgJaA9DCCIzF7g8UVFAlIaUUpRoFUu3aBZHQIN6nm3fAKx1fZQoaAZoCWgPQwgRqWkX0+xwQJSGlFKUaBVNDgFoFkdAg3wJLmITG3V9lChoBmgJaA9DCG0gXWzaM3FAlIaUUpRoFUv5aBZHQIN8aGtZFG51fZQoaAZoCWgPQwhlHCPZI65wQJSGlFKUaBVNBgFoFkdAg3yCJoCdSXV9lChoBmgJaA9DCGiULv1LS3BAlIaUUpRoFU08AWgWR0CDfI0a6z3RdX2UKGgGaAloD0MIaksd5DWccECUhpRSlGgVS/5oFkdAg3+Axi5NGnV9lChoBmgJaA9DCEQZqmIqMW1AlIaUUpRoFU2jAWgWR0CDgFVAiV0LdX2UKGgGaAloD0MI4ZaPpOQfcECUhpRSlGgVTXsBaBZHQIOAbvgFX7t1fZQoaAZoCWgPQwiatKm6h3hyQJSGlFKUaBVNBQFoFkdAg4H1V5rxiHV9lChoBmgJaA9DCNc07zgFQXBAlIaUUpRoFU0LAWgWR0CDgzd43WFwdX2UKGgGaAloD0MIkzmWd5WscUCUhpRSlGgVS/5oFkdAg4NmFSKm9HV9lChoBmgJaA9DCOZAD7Vte21AlIaUUpRoFU0/AWgWR0CDg2eA/cFhdX2UKGgGaAloD0MIexAC8uVUckCUhpRSlGgVTQsBaBZHQIOE4ODrZ8N1fZQoaAZoCWgPQwjOjH40HN9xQJSGlFKUaBVNPQFoFkdAg4XO2RaHK3V9lChoBmgJaA9DCHpsy4CzbHFAlIaUUpRoFU0IAWgWR0CDhkvM8ox6dX2UKGgGaAloD0MIlfJaCd3WcUCUhpRSlGgVTaEBaBZHQIOG+AVfu1F1fZQoaAZoCWgPQwh/9bhvtfJyQJSGlFKUaBVNDgFoFkdAg4feqJdjXnV9lChoBmgJaA9DCMCuJk+ZnnBAlIaUUpRoFU0nAWgWR0CDiXKgZjx1dX2UKGgGaAloD0MIpwUv+gpwTUCUhpRSlGgVS9NoFkdAg4m3lKbrknV9lChoBmgJaA9DCJtWCoEc53BAlIaUUpRoFU1EAWgWR0CDipPFefI0dX2UKGgGaAloD0MI+IiYEomLcECUhpRSlGgVTUMBaBZHQIOKoIF/x2B1fZQoaAZoCWgPQwi0rPvHQrxwQJSGlFKUaBVNAwFoFkdAg4uIAfdRBXV9lChoBmgJaA9DCMjuAiWFD25AlIaUUpRoFU2NAWgWR0CDi4m65Gz9dX2UKGgGaAloD0MI+84vSlA4ckCUhpRSlGgVTSsBaBZHQIOMTzwtrbh1fZQoaAZoCWgPQwiMSuoEtIlxQJSGlFKUaBVNDgFoFkdAg40mwiaAnXV9lChoBmgJaA9DCOoFn+bkuG5AlIaUUpRoFUv8aBZHQIONltj0+Tx1fZQoaAZoCWgPQwjyzqEMlYtzQJSGlFKUaBVNFAFoFkdAg45V9F4LTnV9lChoBmgJaA9DCAtBDkpYdXJAlIaUUpRoFU0EAWgWR0CDkLnZkCmudX2UKGgGaAloD0MImzkktVDFcECUhpRSlGgVTWYBaBZHQIOSKQeV9nd1fZQoaAZoCWgPQwhQUmABzE9xQJSGlFKUaBVL6GgWR0CDkuS00FbFdX2UKGgGaAloD0MIIv/MIH5EcUCUhpRSlGgVTT0BaBZHQIOS9JQLux91fZQoaAZoCWgPQwiBzTl4ZkVwQJSGlFKUaBVNOAFoFkdAg5PxqO938nV9lChoBmgJaA9DCJYKKqp+enFAlIaUUpRoFU2CAWgWR0CDlTyhi9ZidX2UKGgGaAloD0MIQUXVrzStcECUhpRSlGgVTQcBaBZHQIOVoSOBDoh1fZQoaAZoCWgPQwgG2h1STOtwQJSGlFKUaBVNRQFoFkdAg5WlN1yNoHV9lChoBmgJaA9DCFq9w+0Q9HFAlIaUUpRoFU0YAWgWR0CDlmsDnvDxdX2UKGgGaAloD0MIwtzu5b4tc0CUhpRSlGgVS+JoFkdAg6x8bR4QjHV9lChoBmgJaA9DCGGkF7X7z29AlIaUUpRoFU0HAWgWR0CDraGWUr08dX2UKGgGaAloD0MIxvgwexm4ckCUhpRSlGgVTT8BaBZHQIOuEhRqGlB1fZQoaAZoCWgPQwh1OSUgJilyQJSGlFKUaBVNQAFoFkdAg64dl/Yra3V9lChoBmgJaA9DCHi4HRrWkXBAlIaUUpRoFU00AWgWR0CDro2fkFOgdX2UKGgGaAloD0MI09wKYfUecUCUhpRSlGgVTZkBaBZHQIOvwSQHRkV1fZQoaAZoCWgPQwhnQ/6ZgVRxQJSGlFKUaBVL9GgWR0CDsF1PFefJdX2UKGgGaAloD0MIPE1mvC2nb0CUhpRSlGgVTT0BaBZHQIOxA+bExZd1fZQoaAZoCWgPQwjmlettMytNQJSGlFKUaBVLymgWR0CDsqBvrGBGdX2UKGgGaAloD0MI2lNyTmyqcUCUhpRSlGgVTRkBaBZHQIOzj2OAAhl1fZQoaAZoCWgPQwg+lGjJY9twQJSGlFKUaBVNKgFoFkdAg7Omf5DZ13V9lChoBmgJaA9DCC7JAbsaoW1AlIaUUpRoFU0cAWgWR0CDs7ztCzC2dX2UKGgGaAloD0MI4ICWrmDfcUCUhpRSlGgVTRoBaBZHQIO0ZzxPO6d1fZQoaAZoCWgPQwjC+j+H+UJyQJSGlFKUaBVL8mgWR0CDtNrTpgTidX2UKGgGaAloD0MIiH/Y0iPCcECUhpRSlGgVTRcBaBZHQIO1O2uxKQJ1fZQoaAZoCWgPQwhQwkzbP45xQJSGlFKUaBVNGAFoFkdAg7WH3Dej23V9lChoBmgJaA9DCA7aq49HRnBAlIaUUpRoFUvxaBZHQIO3h8a4tpV1fZQoaAZoCWgPQwiyvRb0nrVxQJSGlFKUaBVNIAFoFkdAg7eTJIUah3V9lChoBmgJaA9DCO7tluSAhW5AlIaUUpRoFU0AAWgWR0CDt7B/I8yOdX2UKGgGaAloD0MIJbIPsiw4c0CUhpRSlGgVTR4BaBZHQIO4X6hxo7F1fZQoaAZoCWgPQwht4XmpmHtwQJSGlFKUaBVL/GgWR0CDubL9uP3jdX2UKGgGaAloD0MIiNnLthPUcUCUhpRSlGgVTRsBaBZHQIO6SesgdOt1fZQoaAZoCWgPQwi0qiUdJWpxQJSGlFKUaBVNBQFoFkdAg7qzG5tm+XV9lChoBmgJaA9DCHswKT4+tG9AlIaUUpRoFU1eAWgWR0CDuyhOgxrSdX2UKGgGaAloD0MIT1jiAeXUcUCUhpRSlGgVTQQBaBZHQIO8Tq6e5Fx1fZQoaAZoCWgPQwhpc5zbhDdxQJSGlFKUaBVNBAFoFkdAg71QK8cuJ3V9lChoBmgJaA9DCI0lrI0xT3BAlIaUUpRoFU0LAWgWR0CDvbU/fO2RdX2UKGgGaAloD0MIaoe/JuumcECUhpRSlGgVTRABaBZHQIO9wJE6T4d1fZQoaAZoCWgPQwhkzjP2JdxsQJSGlFKUaBVL72gWR0CDvd1dPci4dX2UKGgGaAloD0MIdTv7ysMhcUCUhpRSlGgVS/1oFkdAg78hMi8nNXV9lChoBmgJaA9DCOs2qP2W7XFAlIaUUpRoFU0xAWgWR0CDv+IhQm/ndX2UKGgGaAloD0MIpBr2e6Lbc0CUhpRSlGgVS+toFkdAg8CQgTyrgnV9lChoBmgJaA9DCLzK2qb4925AlIaUUpRoFU06AWgWR0CDwSO7xusLdX2UKGgGaAloD0MI7rCJzJxvckCUhpRSlGgVTQIBaBZHQIPBeCoS+QF1fZQoaAZoCWgPQwjImLuWEN5uQJSGlFKUaBVNCAFoFkdAg8HKe9SMtXV9lChoBmgJaA9DCNV6v9EODm1AlIaUUpRoFU0XAWgWR0CDwxcer+5wdX2UKGgGaAloD0MIuFm8WFjUcECUhpRSlGgVS/poFkdAg8RVghKUV3V9lChoBmgJaA9DCMR4zau6pnBAlIaUUpRoFU0jAWgWR0CDxPNmlImPdX2UKGgGaAloD0MIiV3b260BcUCUhpRSlGgVTRsBaBZHQIPGL/lyR0V1fZQoaAZoCWgPQwh9ryE4rp9xQJSGlFKUaBVNCgFoFkdAg8a8CYCyQnV9lChoBmgJaA9DCFQ6WP9nDnNAlIaUUpRoFUvzaBZHQIPHKOq//Nt1fZQoaAZoCWgPQwhQVgxXRxZxQJSGlFKUaBVNUQFoFkdAg8d7C79Q43V9lChoBmgJaA9DCKuX32nyQXBAlIaUUpRoFU0PAWgWR0CDyFAdGRV7dX2UKGgGaAloD0MI/MOWHs1fcECUhpRSlGgVTQ0BaBZHQIPIXMKTjed1fZQoaAZoCWgPQwg6eCY0yZxtQJSGlFKUaBVNKAFoFkdAg8jeNT987nV9lChoBmgJaA9DCM9Nm3HaeXJAlIaUUpRoFU0HAWgWR0CDyV71qWTpdX2UKGgGaAloD0MIcZNRZVhzcUCUhpRSlGgVTSwBaBZHQIPLlefI0ZZ1fZQoaAZoCWgPQwjfxftxOy1zQJSGlFKUaBVNKQFoFkdAg8w/wZwXInV9lChoBmgJaA9DCOYHrvIEP21AlIaUUpRoFU0ZAWgWR0CDzJvP1L8KdX2UKGgGaAloD0MIuFuSA3aNbkCUhpRSlGgVTRcBaBZHQIPPBh4MWoF1fZQoaAZoCWgPQwjLgok/CrtsQJSGlFKUaBVNUAFoFkdAg884lIEr5XV9lChoBmgJaA9DCNUgzO0e0HFAlIaUUpRoFU1CAWgWR0CDz2VTJhfCdX2UKGgGaAloD0MIq7LviqDOckCUhpRSlGgVS+ZoFkdAg9DLuQZGa3V9lChoBmgJaA9DCPHUIw3umW9AlIaUUpRoFUv+aBZHQIPRTZtelbh1fZQoaAZoCWgPQwiDpE+r6LNvQJSGlFKUaBVL6WgWR0CD0b+Vkc0cdX2UKGgGaAloD0MIfgIoRpYQbUCUhpRSlGgVTSwBaBZHQIPSAptrKvF1fZQoaAZoCWgPQwgKaCJseGJyQJSGlFKUaBVNDAFoFkdAg9LWGh24eHV9lChoBmgJaA9DCMzuycOCeXBAlIaUUpRoFUvoaBZHQIPTKpLmITJ1fZQoaAZoCWgPQwjLv5ZX7glyQJSGlFKUaBVL/WgWR0CD02TJQtSRdX2UKGgGaAloD0MI4uXpXNF5cECUhpRSlGgVTXYBaBZHQIPUTW7OE/V1ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 248,
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWV1QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}