mojemai commited on
Commit
f5a3778
·
1 Parent(s): 47c99a0

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -1,3 +1,37 @@
1
  ---
2
- {}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -29.37 +/- 143.86
20
+ name: mean_reward
21
+ verified: false
22
  ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd4f09448b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd4f0944940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd4f09449d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd4f0944a60>", "_build": "<function ActorCriticPolicy._build at 0x7fd4f0944af0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd4f0944b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd4f0944c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd4f0944ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd4f0944d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd4f0944dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd4f0944e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd4f0944ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd4f09481c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682950040734332278, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGAp9D6zK2I/asRGPwCIT7+ezXO+cufnPQAAAAAAAAAAc3fZvQ5yvj9N3UG/aYgDPkqumz2gH4Y9AAAAAAAAAADNzL65sCm0P8AJF701pRq+zKPgOXLZCDwAAAAAAAAAADM9sDwLt6E/EVDBPa3c/b7tFRo9YrYAPgAAAAAAAAAAmnVNvtJ8TD9+m4e+0L90v12JXb5C16C8AAAAAAAAAACAEmU9AIxNP23/eD4MtEC/Y6gwvlrwI74AAAAAAAAAAIBBGD18arg/VmE8P6JIWT53ufq8oA6IvQAAAAAAAAAAgIujvTZanT/whRW/5rsxv2ZZCj0Ep5a9AAAAAAAAAAAal009i8qxPyqnwT7c6G++GjYdvRgAd7wAAAAAAAAAADNr2jyPYig/MqBzvd5Sdb9Ijjs+RBQxvAAAAAAAAAAAUtSdvnzyij8DvfG+m/dUv5Negr62hj2+AAAAAAAAAACaNxg9nuK+P+ilWj75OG09XQmJvUcHybwAAAAAAAAAAOYYCb6ENcY9iNd3PTEhrL/OPie/bbJ5vgAAAAAAAAAAWsKDPlFXgj+qYZs+1xROv6Islj3MxJm9AAAAAAAAAADasii+Afb0Pq0e67z/toa/81Hlvl6Kg74AAAAAAAAAAFrmTD6gNGU/uBHTPjKJa7+21Tu+nVnmPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAQAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiQtAo3SUUsCUhpRSlIwBbJRLcIwBdJRHQEF2UxmCiAV1fZQoaAZoCWgPQwhBnfLoRn5MwJSGlFKUaBVLUWgWR0BBd8LKFIuodX2UKGgGaAloD0MIv5tu2SHGW8CUhpRSlGgVS3xoFkdAQXg62fChvnV9lChoBmgJaA9DCGHCaFa20UPAlIaUUpRoFUtOaBZHQEF6vV3EAHV1fZQoaAZoCWgPQwgai6azk9NQwJSGlFKUaBVLa2gWR0BBfU83dbgTdX2UKGgGaAloD0MIX5oiwOm/S8CUhpRSlGgVS1toFkdAQX8sFt8/lnV9lChoBmgJaA9DCNswCoLH9UPAlIaUUpRoFUtVaBZHQEGCoPTXrdF1fZQoaAZoCWgPQwhNaJJYUrtTwJSGlFKUaBVLXGgWR0BBhxrBTGYKdX2UKGgGaAloD0MIDtlAutjNU8CUhpRSlGgVS0hoFkdAQY5FRYRuj3V9lChoBmgJaA9DCF03pbxWLVzAlIaUUpRoFUtyaBZHQEGSvkBCD291fZQoaAZoCWgPQwhWRiOfVwRMwJSGlFKUaBVLiGgWR0BBk4PXkHUudX2UKGgGaAloD0MId/S/XIuJV8CUhpRSlGgVS1ZoFkdAQZPyAhB7eHV9lChoBmgJaA9DCHRgOUIGtVrAlIaUUpRoFUtbaBZHQEGUV1Oj7AN1fZQoaAZoCWgPQwiunL0z2ppFwJSGlFKUaBVLZ2gWR0BBmZh8YyfudX2UKGgGaAloD0MIyQVn8Pf2U8CUhpRSlGgVS0FoFkdAQZplFtsN2HV9lChoBmgJaA9DCNAn8iTpMFLAlIaUUpRoFUtyaBZHQEGaxagVXV91fZQoaAZoCWgPQwggJAuYwJtHwJSGlFKUaBVLTmgWR0BBm1afSQYDdX2UKGgGaAloD0MIkx6GVicoXMCUhpRSlGgVS1VoFkdAQZvFNtZV43V9lChoBmgJaA9DCI+oUN1cm2bAlIaUUpRoFUukaBZHQEGclNUOuq51fZQoaAZoCWgPQwiflEkNbTdbwJSGlFKUaBVLZ2gWR0BBnJv5xiobdX2UKGgGaAloD0MIqG+Z02WLQsCUhpRSlGgVS2poFkdAQZ0078vVVnV9lChoBmgJaA9DCO0PlNv2u03AlIaUUpRoFUtjaBZHQEGd5JK8L8d1fZQoaAZoCWgPQwjE6o8wDNxZwJSGlFKUaBVLeGgWR0BBn2w3YL9ddX2UKGgGaAloD0MI+Ki/XmGNRMCUhpRSlGgVS0JoFkdAQaV58jRlYnV9lChoBmgJaA9DCMAklSnm4k3AlIaUUpRoFUtiaBZHQEGpYRNATqV1fZQoaAZoCWgPQwirXn6nyeZKwJSGlFKUaBVLRGgWR0BBqf/echC/dX2UKGgGaAloD0MI6bXZWInTT8CUhpRSlGgVS0NoFkdAQar7655JLHV9lChoBmgJaA9DCIcYr3lVIzXAlIaUUpRoFUtLaBZHQEGtU3GXHBF1fZQoaAZoCWgPQwisPIGwUzdSwJSGlFKUaBVLWmgWR0BBsgHNX5nEdX2UKGgGaAloD0MIeZCeIocBUcCUhpRSlGgVS15oFkdAQbliUgSvknV9lChoBmgJaA9DCM2Pv7SoAWPAlIaUUpRoFUtYaBZHQEG54i5d4V11fZQoaAZoCWgPQwiFYFW9/IpWwJSGlFKUaBVLW2gWR0BBueCTUy57dX2UKGgGaAloD0MIOBCSBUw0WcCUhpRSlGgVS1loFkdAQbr/hl18s3V9lChoBmgJaA9DCI4HW+z28FPAlIaUUpRoFUtfaBZHQEG8hLXcxj91fZQoaAZoCWgPQwgU0ETY8HRVwJSGlFKUaBVLYmgWR0BBvNxlxwQ2dX2UKGgGaAloD0MIs9MP6iIdSMCUhpRSlGgVS1xoFkdAQbznJT2nKnV9lChoBmgJaA9DCM7HtaFinVvAlIaUUpRoFUtSaBZHQEHB4dp7Czl1fZQoaAZoCWgPQwhe9YB5yA5KwJSGlFKUaBVLaGgWR0BBwpJPIn0DdX2UKGgGaAloD0MICFVq9kBpWcCUhpRSlGgVS3doFkdAQcMebNKRMnV9lChoBmgJaA9DCK4upwTEPEXAlIaUUpRoFUt8aBZHQEHEfnwG4Zx1fZQoaAZoCWgPQwi536Eo0PpUwJSGlFKUaBVLZmgWR0BBzQXqJMxodX2UKGgGaAloD0MIbhPulXmjUcCUhpRSlGgVS3BoFkdAQc/zH0btJHV9lChoBmgJaA9DCEZB8Pj2XmDAlIaUUpRoFUtWaBZHQEHP3WWhRIl1fZQoaAZoCWgPQwgkYHR5c7lVwJSGlFKUaBVLdGgWR0BB0wlSjxkNdX2UKGgGaAloD0MI7IfYYOFTV8CUhpRSlGgVS3JoFkdAQdTmr8zhxnV9lChoBmgJaA9DCDF9ryE4LlbAlIaUUpRoFUtLaBZHQEHWIrvsqrl1fZQoaAZoCWgPQwgtQxzr4g4twJSGlFKUaBVLVGgWR0BB2ZgogFHKdX2UKGgGaAloD0MIaAbxgR01TMCUhpRSlGgVS1loFkdAQdmfbsWweXV9lChoBmgJaA9DCK65o//ltlbAlIaUUpRoFUtXaBZHQEHau6ErXlN1fZQoaAZoCWgPQwj1nV+UoB9NwJSGlFKUaBVLaGgWR0BB3dLg4wRHdX2UKGgGaAloD0MIDFpIwOi4YcCUhpRSlGgVS2loFkdAQd5Nfw7T2HV9lChoBmgJaA9DCLfte9RfOGHAlIaUUpRoFUt0aBZHQEHhd69kBjp1fZQoaAZoCWgPQwhgHjLlQ3phwJSGlFKUaBVLZ2gWR0BB5UIcBEKFdX2UKGgGaAloD0MIuwuUFFjmScCUhpRSlGgVS2hoFkdAQeZOgxrSE3V9lChoBmgJaA9DCMaoa+196k7AlIaUUpRoFUtAaBZHQEHmOlO45Lh1fZQoaAZoCWgPQwgz3lZ6bZNSwJSGlFKUaBVLaWgWR0BB5z1schkidX2UKGgGaAloD0MIFvcfmQ4JUMCUhpRSlGgVS0RoFkdAQe10Rvm5lXV9lChoBmgJaA9DCJdw6C0ezlrAlIaUUpRoFUtKaBZHQEHuZUDMeOp1fZQoaAZoCWgPQwglBRbAlOFSwJSGlFKUaBVLfGgWR0BB7ypJf6XTdX2UKGgGaAloD0MIDoelgR9qVsCUhpRSlGgVS1xoFkdAQfLhUBGQS3V9lChoBmgJaA9DCFNaf0sAlGDAlIaUUpRoFUtuaBZHQEHzVrhzeXR1fZQoaAZoCWgPQwjoTNpU3T1FwJSGlFKUaBVLSGgWR0BB9tD2JzkqdX2UKGgGaAloD0MIMC3qk9z1RcCUhpRSlGgVS3FoFkdAQfczTF2mpHV9lChoBmgJaA9DCKgbKPBO1ETAlIaUUpRoFUttaBZHQEH+4cWCVbB1fZQoaAZoCWgPQwjcvdwnR8VJwJSGlFKUaBVLb2gWR0BB/5k9U0emdX2UKGgGaAloD0MIpS4Zx0gzU8CUhpRSlGgVS21oFkdAQgAIQe3hGnV9lChoBmgJaA9DCKsJou4D+F7AlIaUUpRoFUtoaBZHQEIBYcvM8ox1fZQoaAZoCWgPQwg5DVGFP2BWwJSGlFKUaBVLXmgWR0BCBaNEPUaydX2UKGgGaAloD0MIMQbWcfxMWcCUhpRSlGgVS2FoFkdAQgeUdJaq0nV9lChoBmgJaA9DCBK9jGK5L03AlIaUUpRoFUtMaBZHQEIIsbvPTod1fZQoaAZoCWgPQwiHokCfyJPRv5SGlFKUaBVLdGgWR0BCCXnZCfHxdX2UKGgGaAloD0MIcGByo8grWsCUhpRSlGgVS2hoFkdAQgpHNHH3lHV9lChoBmgJaA9DCIYb8Plh5D7AlIaUUpRoFUtVaBZHQEILD5TIeYF1fZQoaAZoCWgPQwirlnSUgwFTwJSGlFKUaBVLaGgWR0BCCy9mHxjKdX2UKGgGaAloD0MIi+B/K9m9OsCUhpRSlGgVS0ZoFkdAQgufNA1NxnV9lChoBmgJaA9DCBNIiV3bNWPAlIaUUpRoFUtMaBZHQEINGus90Rx1fZQoaAZoCWgPQwh/hGHAkvVYwJSGlFKUaBVLcGgWR0BCFPPTodMkdX2UKGgGaAloD0MIh8Jn6+DwOcCUhpRSlGgVS0VoFkdAQhYbwSamXXV9lChoBmgJaA9DCCUC1T+I4VTAlIaUUpRoFUtnaBZHQEIZfTkQwsZ1fZQoaAZoCWgPQwjw2xDjNSBSwJSGlFKUaBVLbGgWR0BCG4YBNmDldX2UKGgGaAloD0MI7dXHQ9+BU8CUhpRSlGgVS0ZoFkdAQhzpqynk1nV9lChoBmgJaA9DCAfPhCaJYFTAlIaUUpRoFUtuaBZHQEIlQBxPwd91fZQoaAZoCWgPQwiUvhBy3gRSwJSGlFKUaBVLbmgWR0BCJsUIsyzpdX2UKGgGaAloD0MIK8B3mzesV8CUhpRSlGgVS1doFkdAQibPKMefZnV9lChoBmgJaA9DCJvkR/yKr1bAlIaUUpRoFUtUaBZHQEInXkHUtqZ1fZQoaAZoCWgPQwhMGM3K9t5UwJSGlFKUaBVLd2gWR0BCKE74i5d4dX2UKGgGaAloD0MIQpdw6C2kYcCUhpRSlGgVS2RoFkdAQiqoKlYU4HV9lChoBmgJaA9DCIJTH0jeZFHAlIaUUpRoFUtnaBZHQEIqscyWRih1fZQoaAZoCWgPQwj+e/Dapf1YwJSGlFKUaBVLW2gWR0BCLBKL876pdX2UKGgGaAloD0MIejiB6bQHWMCUhpRSlGgVS2hoFkdAQi2S2Yv38HV9lChoBmgJaA9DCPryAuwjoGfAlIaUUpRoFUtlaBZHQEIt1+RYA811fZQoaAZoCWgPQwjcYn5uaGFTwJSGlFKUaBVLa2gWR0BCL0/GEPDpdX2UKGgGaAloD0MIhSNIpdhTXsCUhpRSlGgVS1ZoFkdAQjN7hNucc3V9lChoBmgJaA9DCKHbSxqjIl7AlIaUUpRoFUtdaBZHQEI7RnezlcR1fZQoaAZoCWgPQwg+6USCqQ5GwJSGlFKUaBVLcmgWR0BCO/QKKHfudX2UKGgGaAloD0MIlufB3VnNRsCUhpRSlGgVS11oFkdAQjzfrKNhmXV9lChoBmgJaA9DCPtalxqhNVbAlIaUUpRoFUtCaBZHQEI9NHH3lCF1fZQoaAZoCWgPQwjl795RY4VRwJSGlFKUaBVLPmgWR0BCPT2exwAEdX2UKGgGaAloD0MI/TOD+MDCR8CUhpRSlGgVS05oFkdAQj/nZCfHxXV9lChoBmgJaA9DCH6nyYy3dGLAlIaUUpRoFUt0aBZHQEJBWPLgXM11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-52-generic-x86_64-with-glibc2.31 # 58~20.04.1-Ubuntu SMP Thu Oct 13 13:09:46 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "True", "Numpy": "1.24.3", "Gym": "0.21.0"}}
mlp-ppo-gym-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:226eceffe15232bd1e3c661185df3ed7140719b72212468944bca6c59fc6e31e
3
- size 147341
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10fd1370443df388bf72c6e50565f730a117fadc5bf4c2b1bd6ea7490dc9dc0e
3
+ size 147330
mlp-ppo-gym-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
mlp-ppo-gym-LunarLander-v2/data ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd4f09448b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd4f0944940>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd4f09449d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd4f0944a60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd4f0944af0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd4f0944b80>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd4f0944c10>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd4f0944ca0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd4f0944d30>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd4f0944dc0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd4f0944e50>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd4f0944ee0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fd4f09481c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 114688,
25
+ "_total_timesteps": 100000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1682950040734332278,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "lr_schedule": {
33
+ ":type:": "<class 'function'>",
34
+ ":serialized:": "gAWV1QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
35
+ },
36
+ "_last_obs": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGAp9D6zK2I/asRGPwCIT7+ezXO+cufnPQAAAAAAAAAAc3fZvQ5yvj9N3UG/aYgDPkqumz2gH4Y9AAAAAAAAAADNzL65sCm0P8AJF701pRq+zKPgOXLZCDwAAAAAAAAAADM9sDwLt6E/EVDBPa3c/b7tFRo9YrYAPgAAAAAAAAAAmnVNvtJ8TD9+m4e+0L90v12JXb5C16C8AAAAAAAAAACAEmU9AIxNP23/eD4MtEC/Y6gwvlrwI74AAAAAAAAAAIBBGD18arg/VmE8P6JIWT53ufq8oA6IvQAAAAAAAAAAgIujvTZanT/whRW/5rsxv2ZZCj0Ep5a9AAAAAAAAAAAal009i8qxPyqnwT7c6G++GjYdvRgAd7wAAAAAAAAAADNr2jyPYig/MqBzvd5Sdb9Ijjs+RBQxvAAAAAAAAAAAUtSdvnzyij8DvfG+m/dUv5Negr62hj2+AAAAAAAAAACaNxg9nuK+P+ilWj75OG09XQmJvUcHybwAAAAAAAAAAOYYCb6ENcY9iNd3PTEhrL/OPie/bbJ5vgAAAAAAAAAAWsKDPlFXgj+qYZs+1xROv6Islj3MxJm9AAAAAAAAAADasii+Afb0Pq0e67z/toa/81Hlvl6Kg74AAAAAAAAAAFrmTD6gNGU/uBHTPjKJa7+21Tu+nVnmPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_episode_starts": {
41
+ ":type:": "<class 'numpy.ndarray'>",
42
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAQAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
43
+ },
44
+ "_last_original_obs": null,
45
+ "_episode_num": 0,
46
+ "use_sde": false,
47
+ "sde_sample_freq": -1,
48
+ "_current_progress_remaining": -0.1468799999999999,
49
+ "_stats_window_size": 100,
50
+ "ep_info_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiQtAo3SUUsCUhpRSlIwBbJRLcIwBdJRHQEF2UxmCiAV1fZQoaAZoCWgPQwhBnfLoRn5MwJSGlFKUaBVLUWgWR0BBd8LKFIuodX2UKGgGaAloD0MIv5tu2SHGW8CUhpRSlGgVS3xoFkdAQXg62fChvnV9lChoBmgJaA9DCGHCaFa20UPAlIaUUpRoFUtOaBZHQEF6vV3EAHV1fZQoaAZoCWgPQwgai6azk9NQwJSGlFKUaBVLa2gWR0BBfU83dbgTdX2UKGgGaAloD0MIX5oiwOm/S8CUhpRSlGgVS1toFkdAQX8sFt8/lnV9lChoBmgJaA9DCNswCoLH9UPAlIaUUpRoFUtVaBZHQEGCoPTXrdF1fZQoaAZoCWgPQwhNaJJYUrtTwJSGlFKUaBVLXGgWR0BBhxrBTGYKdX2UKGgGaAloD0MIDtlAutjNU8CUhpRSlGgVS0hoFkdAQY5FRYRuj3V9lChoBmgJaA9DCF03pbxWLVzAlIaUUpRoFUtyaBZHQEGSvkBCD291fZQoaAZoCWgPQwhWRiOfVwRMwJSGlFKUaBVLiGgWR0BBk4PXkHUudX2UKGgGaAloD0MId/S/XIuJV8CUhpRSlGgVS1ZoFkdAQZPyAhB7eHV9lChoBmgJaA9DCHRgOUIGtVrAlIaUUpRoFUtbaBZHQEGUV1Oj7AN1fZQoaAZoCWgPQwiunL0z2ppFwJSGlFKUaBVLZ2gWR0BBmZh8YyfudX2UKGgGaAloD0MIyQVn8Pf2U8CUhpRSlGgVS0FoFkdAQZplFtsN2HV9lChoBmgJaA9DCNAn8iTpMFLAlIaUUpRoFUtyaBZHQEGaxagVXV91fZQoaAZoCWgPQwggJAuYwJtHwJSGlFKUaBVLTmgWR0BBm1afSQYDdX2UKGgGaAloD0MIkx6GVicoXMCUhpRSlGgVS1VoFkdAQZvFNtZV43V9lChoBmgJaA9DCI+oUN1cm2bAlIaUUpRoFUukaBZHQEGclNUOuq51fZQoaAZoCWgPQwiflEkNbTdbwJSGlFKUaBVLZ2gWR0BBnJv5xiobdX2UKGgGaAloD0MIqG+Z02WLQsCUhpRSlGgVS2poFkdAQZ0078vVVnV9lChoBmgJaA9DCO0PlNv2u03AlIaUUpRoFUtjaBZHQEGd5JK8L8d1fZQoaAZoCWgPQwjE6o8wDNxZwJSGlFKUaBVLeGgWR0BBn2w3YL9ddX2UKGgGaAloD0MI+Ki/XmGNRMCUhpRSlGgVS0JoFkdAQaV58jRlYnV9lChoBmgJaA9DCMAklSnm4k3AlIaUUpRoFUtiaBZHQEGpYRNATqV1fZQoaAZoCWgPQwirXn6nyeZKwJSGlFKUaBVLRGgWR0BBqf/echC/dX2UKGgGaAloD0MI6bXZWInTT8CUhpRSlGgVS0NoFkdAQar7655JLHV9lChoBmgJaA9DCIcYr3lVIzXAlIaUUpRoFUtLaBZHQEGtU3GXHBF1fZQoaAZoCWgPQwisPIGwUzdSwJSGlFKUaBVLWmgWR0BBsgHNX5nEdX2UKGgGaAloD0MIeZCeIocBUcCUhpRSlGgVS15oFkdAQbliUgSvknV9lChoBmgJaA9DCM2Pv7SoAWPAlIaUUpRoFUtYaBZHQEG54i5d4V11fZQoaAZoCWgPQwiFYFW9/IpWwJSGlFKUaBVLW2gWR0BBueCTUy57dX2UKGgGaAloD0MIOBCSBUw0WcCUhpRSlGgVS1loFkdAQbr/hl18s3V9lChoBmgJaA9DCI4HW+z28FPAlIaUUpRoFUtfaBZHQEG8hLXcxj91fZQoaAZoCWgPQwgU0ETY8HRVwJSGlFKUaBVLYmgWR0BBvNxlxwQ2dX2UKGgGaAloD0MIs9MP6iIdSMCUhpRSlGgVS1xoFkdAQbznJT2nKnV9lChoBmgJaA9DCM7HtaFinVvAlIaUUpRoFUtSaBZHQEHB4dp7Czl1fZQoaAZoCWgPQwhe9YB5yA5KwJSGlFKUaBVLaGgWR0BBwpJPIn0DdX2UKGgGaAloD0MICFVq9kBpWcCUhpRSlGgVS3doFkdAQcMebNKRMnV9lChoBmgJaA9DCK4upwTEPEXAlIaUUpRoFUt8aBZHQEHEfnwG4Zx1fZQoaAZoCWgPQwi536Eo0PpUwJSGlFKUaBVLZmgWR0BBzQXqJMxodX2UKGgGaAloD0MIbhPulXmjUcCUhpRSlGgVS3BoFkdAQc/zH0btJHV9lChoBmgJaA9DCEZB8Pj2XmDAlIaUUpRoFUtWaBZHQEHP3WWhRIl1fZQoaAZoCWgPQwgkYHR5c7lVwJSGlFKUaBVLdGgWR0BB0wlSjxkNdX2UKGgGaAloD0MI7IfYYOFTV8CUhpRSlGgVS3JoFkdAQdTmr8zhxnV9lChoBmgJaA9DCDF9ryE4LlbAlIaUUpRoFUtLaBZHQEHWIrvsqrl1fZQoaAZoCWgPQwgtQxzr4g4twJSGlFKUaBVLVGgWR0BB2ZgogFHKdX2UKGgGaAloD0MIaAbxgR01TMCUhpRSlGgVS1loFkdAQdmfbsWweXV9lChoBmgJaA9DCK65o//ltlbAlIaUUpRoFUtXaBZHQEHau6ErXlN1fZQoaAZoCWgPQwj1nV+UoB9NwJSGlFKUaBVLaGgWR0BB3dLg4wRHdX2UKGgGaAloD0MIDFpIwOi4YcCUhpRSlGgVS2loFkdAQd5Nfw7T2HV9lChoBmgJaA9DCLfte9RfOGHAlIaUUpRoFUt0aBZHQEHhd69kBjp1fZQoaAZoCWgPQwhgHjLlQ3phwJSGlFKUaBVLZ2gWR0BB5UIcBEKFdX2UKGgGaAloD0MIuwuUFFjmScCUhpRSlGgVS2hoFkdAQeZOgxrSE3V9lChoBmgJaA9DCMaoa+196k7AlIaUUpRoFUtAaBZHQEHmOlO45Lh1fZQoaAZoCWgPQwgz3lZ6bZNSwJSGlFKUaBVLaWgWR0BB5z1schkidX2UKGgGaAloD0MIFvcfmQ4JUMCUhpRSlGgVS0RoFkdAQe10Rvm5lXV9lChoBmgJaA9DCJdw6C0ezlrAlIaUUpRoFUtKaBZHQEHuZUDMeOp1fZQoaAZoCWgPQwglBRbAlOFSwJSGlFKUaBVLfGgWR0BB7ypJf6XTdX2UKGgGaAloD0MIDoelgR9qVsCUhpRSlGgVS1xoFkdAQfLhUBGQS3V9lChoBmgJaA9DCFNaf0sAlGDAlIaUUpRoFUtuaBZHQEHzVrhzeXR1fZQoaAZoCWgPQwjoTNpU3T1FwJSGlFKUaBVLSGgWR0BB9tD2JzkqdX2UKGgGaAloD0MIMC3qk9z1RcCUhpRSlGgVS3FoFkdAQfczTF2mpHV9lChoBmgJaA9DCKgbKPBO1ETAlIaUUpRoFUttaBZHQEH+4cWCVbB1fZQoaAZoCWgPQwjcvdwnR8VJwJSGlFKUaBVLb2gWR0BB/5k9U0emdX2UKGgGaAloD0MIpS4Zx0gzU8CUhpRSlGgVS21oFkdAQgAIQe3hGnV9lChoBmgJaA9DCKsJou4D+F7AlIaUUpRoFUtoaBZHQEIBYcvM8ox1fZQoaAZoCWgPQwg5DVGFP2BWwJSGlFKUaBVLXmgWR0BCBaNEPUaydX2UKGgGaAloD0MIMQbWcfxMWcCUhpRSlGgVS2FoFkdAQgeUdJaq0nV9lChoBmgJaA9DCBK9jGK5L03AlIaUUpRoFUtMaBZHQEIIsbvPTod1fZQoaAZoCWgPQwiHokCfyJPRv5SGlFKUaBVLdGgWR0BCCXnZCfHxdX2UKGgGaAloD0MIcGByo8grWsCUhpRSlGgVS2hoFkdAQgpHNHH3lHV9lChoBmgJaA9DCIYb8Plh5D7AlIaUUpRoFUtVaBZHQEILD5TIeYF1fZQoaAZoCWgPQwirlnSUgwFTwJSGlFKUaBVLaGgWR0BCCy9mHxjKdX2UKGgGaAloD0MIi+B/K9m9OsCUhpRSlGgVS0ZoFkdAQgufNA1NxnV9lChoBmgJaA9DCBNIiV3bNWPAlIaUUpRoFUtMaBZHQEINGus90Rx1fZQoaAZoCWgPQwh/hGHAkvVYwJSGlFKUaBVLcGgWR0BCFPPTodMkdX2UKGgGaAloD0MIh8Jn6+DwOcCUhpRSlGgVS0VoFkdAQhYbwSamXXV9lChoBmgJaA9DCCUC1T+I4VTAlIaUUpRoFUtnaBZHQEIZfTkQwsZ1fZQoaAZoCWgPQwjw2xDjNSBSwJSGlFKUaBVLbGgWR0BCG4YBNmDldX2UKGgGaAloD0MI7dXHQ9+BU8CUhpRSlGgVS0ZoFkdAQhzpqynk1nV9lChoBmgJaA9DCAfPhCaJYFTAlIaUUpRoFUtuaBZHQEIlQBxPwd91fZQoaAZoCWgPQwiUvhBy3gRSwJSGlFKUaBVLbmgWR0BCJsUIsyzpdX2UKGgGaAloD0MIK8B3mzesV8CUhpRSlGgVS1doFkdAQibPKMefZnV9lChoBmgJaA9DCJvkR/yKr1bAlIaUUpRoFUtUaBZHQEInXkHUtqZ1fZQoaAZoCWgPQwhMGM3K9t5UwJSGlFKUaBVLd2gWR0BCKE74i5d4dX2UKGgGaAloD0MIQpdw6C2kYcCUhpRSlGgVS2RoFkdAQiqoKlYU4HV9lChoBmgJaA9DCIJTH0jeZFHAlIaUUpRoFUtnaBZHQEIqscyWRih1fZQoaAZoCWgPQwj+e/Dapf1YwJSGlFKUaBVLW2gWR0BCLBKL876pdX2UKGgGaAloD0MIejiB6bQHWMCUhpRSlGgVS2hoFkdAQi2S2Yv38HV9lChoBmgJaA9DCPryAuwjoGfAlIaUUpRoFUtlaBZHQEIt1+RYA811fZQoaAZoCWgPQwjcYn5uaGFTwJSGlFKUaBVLa2gWR0BCL0/GEPDpdX2UKGgGaAloD0MIhSNIpdhTXsCUhpRSlGgVS1ZoFkdAQjN7hNucc3V9lChoBmgJaA9DCKHbSxqjIl7AlIaUUpRoFUtdaBZHQEI7RnezlcR1fZQoaAZoCWgPQwg+6USCqQ5GwJSGlFKUaBVLcmgWR0BCO/QKKHfudX2UKGgGaAloD0MIlufB3VnNRsCUhpRSlGgVS11oFkdAQjzfrKNhmXV9lChoBmgJaA9DCPtalxqhNVbAlIaUUpRoFUtCaBZHQEI9NHH3lCF1fZQoaAZoCWgPQwjl795RY4VRwJSGlFKUaBVLPmgWR0BCPT2exwAEdX2UKGgGaAloD0MI/TOD+MDCR8CUhpRSlGgVS05oFkdAQj/nZCfHxXV9lChoBmgJaA9DCH6nyYy3dGLAlIaUUpRoFUt0aBZHQEJBWPLgXM11ZS4="
53
+ },
54
+ "ep_success_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
57
+ },
58
+ "_n_updates": 28,
59
+ "observation_space": {
60
+ ":type:": "<class 'gym.spaces.box.Box'>",
61
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
62
+ "dtype": "float32",
63
+ "_shape": [
64
+ 8
65
+ ],
66
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
67
+ "high": "[inf inf inf inf inf inf inf inf]",
68
+ "bounded_below": "[False False False False False False False False]",
69
+ "bounded_above": "[False False False False False False False False]",
70
+ "_np_random": null
71
+ },
72
+ "action_space": {
73
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
74
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
75
+ "n": 4,
76
+ "_shape": [],
77
+ "dtype": "int64",
78
+ "_np_random": null
79
+ },
80
+ "n_envs": 16,
81
+ "n_steps": 1024,
82
+ "gamma": 0.999,
83
+ "gae_lambda": 0.98,
84
+ "ent_coef": 0.01,
85
+ "vf_coef": 0.5,
86
+ "max_grad_norm": 0.5,
87
+ "batch_size": 64,
88
+ "n_epochs": 4,
89
+ "clip_range": {
90
+ ":type:": "<class 'function'>",
91
+ ":serialized:": "gAWV1QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
92
+ },
93
+ "clip_range_vf": null,
94
+ "normalize_advantage": true,
95
+ "target_kl": null
96
+ }
mlp-ppo-gym-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b402ba80847dbd85d2c6bc76452675c1251cf552634bc4a0dcd4a902152cffe8
3
+ size 87929
mlp-ppo-gym-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74a796d4d4f887533e815f604439c8dbd5b9ff0a2ba0a2f4838e7018fc21161f
3
+ size 43329
mlp-ppo-gym-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
mlp-ppo-gym-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.0-52-generic-x86_64-with-glibc2.31 # 58~20.04.1-Ubuntu SMP Thu Oct 13 13:09:46 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.3
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (241 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -29.370321131055242, "std_reward": 143.86170936580515, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-01T14:08:06.611423"}